Quiz \# 07
Math 102-Section 10 Calculus II
4 April 2019, Thursday
Instructor: Ali Sinan Sertöz

Solution Key

Q-1)

(i) Draw or describe the graph given in spherical coordinates as $\rho=\cos \phi$.
(ii) Draw or describe the graph given in spherical coordinates as $\phi=\pi / 6$.
(iii) Write a triple integral in spherical coordinates which calculates the volume of the solid that lies inside $\rho=\cos \phi$ but above $\phi=\pi / 6$.
(iv) Evaluate this integral.

Grading: (i) 2 points, (ii) 2 points, (iii) 4 points, (iv) 2 points.

Solution:

(i) This is the sphere of radius $1 / 2$ with center at $(0,0,1 / 2)$ in \mathbb{R}^{3}.
(ii) This is the half cone whose sides make an angle of $\pi / 6$ with the z-coordinate and lie above the $x y$-plane.
(iii)

$$
V=\int_{0}^{2 \pi} \int_{0}^{\pi / 6} \int_{0}^{\cos \phi} \rho^{2} \sin \phi d \rho d \phi d \theta
$$

(iv)

$$
\begin{aligned}
V & =\int_{0}^{2 \pi} \int_{0}^{\pi / 6} \int_{0}^{\cos \phi} \rho^{2} \sin \phi d \rho d \phi d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{\pi / 6} \sin \phi\left(\left.\frac{1}{3} \rho^{3}\right|_{0} ^{\cos \phi}\right) d \phi d \theta=\int_{0}^{2 \pi} \int_{0}^{\pi / 6} \frac{1}{3} \sin \phi \cos ^{3} \phi d \phi d \theta \\
& =\int_{0}^{2 \pi}\left(-\left.\frac{1}{12} \cos ^{4} \phi\right|_{0} ^{\pi / 6}\right) d \theta \\
& =\int_{0}^{2 \pi} \frac{7}{192} d \theta \\
& =\frac{7 \pi}{96} \approx 0.23
\end{aligned}
$$

