Bilkent University

Quiz \# 08

Math 102-Section 10 Calculus II
11 April 2019, Thursday
Instructor: Ali Sinan Sertöz

Solution Key

Q-1) Consider the solid that is common to the cylinders $x^{2}+y^{2}=a^{2}, \quad x^{2}+z^{2}=a^{2}, \quad z^{2}+y^{2}=a^{2}$, where $a>0$.
(i) Sketch the part of the solid as seen in the first octant.
(ii) Set up a triple integral which calculates the volume of this solid.
(iii) Evaluate this integral.

Grading: (i) 3 points, (ii) 5 points, (iii) 2 points.

Solution:

(i)

$$
x^{2}+y^{2}=a^{2}, \quad y^{2}+z^{2}=a^{2}, \quad z^{2}+x^{2}=a^{2} .
$$

(ii) In the $x y$-plane consider the region that is bounded by $y=0, y=x$ and $x^{2}+y^{2}=a^{2}$. The solid that lies above this region is one sixteenth of the whole solid. A generic ray emanating from a point in this region and parallel to the z-axis leaves the solid along the (green) surface $x^{2}+z^{2}=a^{2}$. Notice that $x=y$ and $x^{2}+y^{2}=a^{2}$ curves intersect in the $x y$-plane at $x=y=a / \sqrt{2}$. We now set up the volume integral using this information.

$$
V=16\left[\int_{0}^{a / \sqrt{2}} \int_{0}^{x} \int_{0}^{\sqrt{a^{2}-x^{2}}} d z d y d x+\int_{a / \sqrt{2}}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} \int_{0}^{\sqrt{a^{2}-x^{2}}} d z d y, d x\right]
$$

(iii) Continuing with the above integral we have:

$$
\begin{aligned}
V & =16\left[\int_{0}^{a / \sqrt{2}} x \sqrt{a^{2}-x^{2}} d x+\int_{a / \sqrt{2}}^{a}\left(a^{2}-x^{2}\right) d x\right] \\
& =16\left[\left(-\left.\frac{1}{3}\left(a^{2}-x^{2}\right)^{3 / 2}\right|_{0} ^{a / \sqrt{2}}\right)+\left(a^{2} x-\left.\frac{1}{3} x^{3}\right|_{a / \sqrt{2}} ^{a}\right)\right] \\
& =16\left[1-\frac{\sqrt{2}}{2}\right] a^{3} \approx 4.68 a^{3} .
\end{aligned}
$$

