Bilkent University
Quiz \# 09
Math 102-Section 10 Calculus II
18 April 2019, Thursday
Instructor: Ali Sinan Sertöz

Solution Key

Q-1) Define a sequence recursively by $a_{1}=\sqrt{7}$, and $a_{n+1}=\sqrt{7 a_{n}}$ for $n \geq 1$.
(i) Use induction to show that $0<a_{n}<7$ for all $n \geq 1$.
(ii) Use induction to show that $\left(a_{n}\right)$ is a strictly increasing sequence.
(iii) Show that $\lim _{n \rightarrow \infty} a_{n}$ exists.
(iv) Calculate $\lim _{n \rightarrow \infty} a_{n}$.

Grading: (i) 3 points, (ii) 3 points, (iii) 3 points, (iv) 1 point.

Solution:

(i) It is clear that all $a_{n}>0$. We prove that $a_{n}<7$. For $n=1$ we have $a_{1}=\sqrt{7}<7$. Assume $a_{n}<7$ for some $n \geq 1$. We will check if $a_{n+1}<7$ or not. We have $a_{n+1}=\sqrt{7 a_{n}}<\sqrt{7 \cdot 7}=7$ where we used $a_{n}<7$. Hence by induction we proved that $a_{n}<7$ for all $n \geq 1$.
(ii) First for $n=1$ we have $a_{2}=\sqrt{7 a_{1}}>\sqrt{a_{1} a_{1}}=a_{1}$ where we used $a_{1}<7$. So $a_{2}>a_{1}$. Now assume $a_{n+1}>a_{n}$ for some $n \geq 1$. We will check if $a_{n+2}>a_{n+1}$ or not. We have $a_{n+2}-a_{n+1}=$ $\sqrt{7 a_{n+1}}-a_{n+1}>\sqrt{a_{n+1} a_{n+1}}-a_{n+1}=0$ where we used $7>a_{n+1}$ which we proved above. Hence we proved that a_{n} is strictly increasing
(iii) $\left(a_{n}\right)$ is a bounded monotone sequence, so it converges.
(iv) Let $\lim _{n \rightarrow \infty} a_{n}=L$. Taking the limit of both sides of the recursive equation $a_{n+1}=\sqrt{7 a_{n}}$ as $n \rightarrow \infty$ we get $L=\sqrt{7 L}$, from which we conclude that $L=7$ since $0<a_{1}<L$.

