Bilkent University

Quiz \# 11
Math 102-Section 10 Calculus II
2 May 2019, Thursday
Instructor: Ali Sinan Sertöz

Solution Key

Q-1) Let $s_{n}=1+\frac{1}{2}+\cdots+\frac{1}{n}$.
(i) Show that there exists an integer n such that $2019<s_{n}<2020$.
(ii) Explicitly find an integer n such that $10<s_{n}<11$.

Grading: (i) 5 points, (ii) 5 points. \quad Hint: $e^{10}=22026.46 \ldots$ and $\ln (n+1)<s_{n}<1+\ln n$.

Solution:

(i) Since the harmonic series diverges to infinity, the partial sum s_{n} eventually surpasses every real number.

In particular there exists an integer n such that $s_{n-1} \leq 2019<s_{n}$. Note that in this case $n>2$ since $s_{2}=3 / 2<2$.

We need to show that for this n we must have $s_{n}<2020$. But $s_{n}-s_{n-1}=1 / n<1 / 2$ since $n>2$. Hence $s_{n}-2019<1 / 2$, which in turn shows that $s_{n}<2020$ as claimed.

(ii)

Using the second hint, it suffices to find an n such that

$$
10 \leq \ln (n+1)<s_{n}<1+\ln n \leq 11
$$

Using the first hint, the first inequality gives $n \geq 22025.46$, and the last inequality gives $n \leq 22026.46$
Hence $n=22026$ will work for us. In fact $s_{22026}=10.57$.
However the smallest n with $10<s_{n}<11$ is 12367 . Check that $s_{12366}=9.999962$ and $s_{12367}=$ 10.000043.

