Ia. Find parametric equations of the line of intersection L of the planes:

$$
\begin{gathered}
\mathscr{M}: x+3 y+5 z=-1 \quad \text { and } \quad \mathscr{N}: 3 x+2 y+z=4 \\
\Downarrow
\end{gathered}
$$

Let $x=t$. Then

$$
3 y+5 z=-t-1 \quad \text { (1) and } \quad 2 y+z=-3 t+4 \text { (2) }
$$

$5 \times(2)$-(1) gives $7 y=-14 t+21 \Rightarrow y=-2 t+3 \Rightarrow z=t-2$
(2)

Hence, $L: x=t, y=-2 t+3, z=t-2 ;-\infty<t<\infty$.
lb. Suppose that $\mathbf{r}(t)=\overrightarrow{O P}(t)$ is a parametric curve such that the point $P(t)$ lies on the plane with equation

$$
\mathscr{P}(t): e^{t} x+e^{2 t} y+e^{3 t} z=1
$$

for each t. Show that if $\left.\frac{d}{d t} \mathbf{r}(t)\right|_{t=0}=0$, then the point $P(0)$ belongs to the line L in Part Ia.
Let $\vec{r}(t)=\overrightarrow{O P}(t)=x(t) \vec{\imath}+y(t) \vec{\jmath}+z(t) \vec{k}$.

$$
\begin{aligned}
& e^{t} x(t)+e^{2 t} y(t)+e^{3 t} z(t)=1 \text { for all } t \stackrel{t=0}{\longrightarrow x(0)+y(0)+z(0)=1} \begin{array}{l}
\| d / d t \\
e^{t} x(t)+e^{t} x^{\prime}(t)+2 e^{2 t} y(t)+e^{2 t} y^{\prime}(t)+3 e^{3 t} z(t)+e^{3 t} z^{\prime}(t)=0
\end{array} .
\end{aligned}
$$

$$
\sqrt[V]{ } t=0
$$

(4.) $x(0)+2 y(0)+3 z(0)=0$ as $x^{\prime}(0)=y^{\prime}(0)=z^{\prime}(0)=0$

$$
\left.\begin{array}{ll}
4 \times(3)-(4) \text { gives } & 3 x(0)+2 y(0)+z(0)=4 \\
2 x(4)-(3) \text { gives } & x(0)+3 y(0)+5 z(0)=-1
\end{array}\right\} \Rightarrow(x(0), y(0), z(0)) \text { lies on } L
$$

$$
[(3+3+3)+(8+8) \text { points }] \quad 2
$$

2a. Make each of the following sentences into a true statement by choosing one of the possible completions. Indicate your choice by putting a \boldsymbol{X} in the corresponding box. No explanation is required.
(1) $\lim _{(x, y) \rightarrow(0,0)} \frac{x\left(x^{2}-y^{2}\right)}{\left(y-x^{2}\right)^{2}+\left(y+x^{2}\right)^{2}} \quad \square$ exists $\quad \square$ does not exist
(2) $\lim _{(x, y) \rightarrow(0,0)} \frac{y\left(x^{2}-y^{2}\right)}{\left(y-x^{2}\right)^{2}+\left(y+x^{2}\right)^{2}} \square$ exists does not exist
(3) $\lim _{(x, y) \rightarrow(0,0)} \frac{x y\left(x^{2}-y^{2}\right)}{\left(y-x^{2}\right)^{2}+\left(y+x^{2}\right)^{2}} \quad \not \subset$ exists \square does not exist

2b. Now prove two of your statements in Part La. Write the number of the statement you are proving inside the circle.

- I will prove the statement (1) here.

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x\left(x^{2}-y^{2}\right)}{\left(y-x^{2}\right)^{2}+\left(y+x^{2}\right)^{2}}=\lim _{x \rightarrow 0} \frac{x^{3}}{2 x^{4}}=\frac{1}{2} \lim _{x \rightarrow 0} \frac{1}{x} \text { dueinot exist }
$$

along the x-axis

$$
\Rightarrow \lim _{(x, y)+(0, v)} \frac{x\left(x^{2}-y^{2}\right)}{\left(y-x^{2}\right)^{2}+\left(y+x^{2}\right)^{2}} \text { doe, not exult by the 1-Path Test. }
$$

- I will prove the statement (2) here.

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{y\left(x^{2}-y^{2}\right)}{\left(y-x^{2}\right)^{2}+\left(y+x^{2}\right)^{2}}=\lim _{x \rightarrow 0} 0=0
$$

along the x-axis

$$
\lim _{(x, y) \rightarrow(0,0)}
$$

$$
\begin{aligned}
& \frac{y\left(x^{2}-y^{2}\right)}{\left(y-x^{2}\right)^{2}+\left(y+x^{2}\right)^{2}}=\lim _{x \rightarrow 0} 0=0 \\
& \frac{y\left(x^{2}-y^{2}\right)}{\left(y-x^{2}\right)^{2}+\left(y+x^{2}\right)^{2}}=\lim _{x \rightarrow 0} \frac{x^{2}\left(x^{2}-x^{4}\right)}{4 x^{4}}=\frac{1}{4} \lim _{x \rightarrow 0}\left(1-x^{2}\right)=\frac{1}{4}
\end{aligned}
$$

along the parabola $y=x^{2}$

$$
0 \neq \frac{1}{4} \Rightarrow \lim _{(x, y) \rightarrow(0,0)} \frac{y\left(x^{2}-y^{2}\right)}{\left(y-x^{2}\right)^{2}+\left(y+x^{2}\right)^{2}} \text { does not exit by the 2-Path Test. }
$$

- I will prove the statement 3 here.

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x y\left(x^{2}-y^{2}\right)}{\left(y-x^{2}\right)^{2}+\left(y+x^{2}\right)^{2}}=\frac{1}{2} \lim _{(x, y) \rightarrow(0,0)} \frac{x^{3} y}{x^{4}+y^{2}}-\frac{1}{2} \lim _{(x, y) \rightarrow(0,0)} \frac{x y^{3}}{x^{4}+y^{2}}=0-0=0
$$

where the first limit is zero since $\frac{3}{4}+\frac{1}{2}=\frac{5}{4}>1$, and the second limit is zero since $\frac{1}{4}+\frac{3}{2}=\frac{7}{4}>1$.
3. The combustion equation

$$
u_{x x}+u_{y y}=-e^{u}
$$

arises in the study of self-propagating exothermic oxidative chemical reactions in thermochemistry.
Find all possible values of the triple (a, b, c) of constants for which the function

$$
u(x, y)=a \ln \left(b x^{2}+b y^{2}+c\right)
$$

satisfies the combustion equation for all (x, y) with $x^{2}+y^{2}<1$ as well as the condition $u(x, y)=0$ for all (x, y) with $x^{2}+y^{2}=1$.

$$
\begin{aligned}
u_{x} & =a \cdot \frac{1}{b x^{2}+b y^{2}+c} \cdot 2 b x \\
u_{x x} & =a \cdot \frac{-1}{\left(b x^{2}+b y^{2}+c\right)^{2}} \cdot(2 b x)^{2}+a \cdot \frac{1}{b x^{2}+b y^{2}+c} \cdot 2 b
\end{aligned}
$$

Similarly:

$$
e^{u}=\exp \left(a \ln \left(b x^{2}+b y^{2}+c\right)\right)=\left(b x^{2}+b y^{2}+c\right)^{a}
$$

Hence: $u_{x x}+u_{y y}=-e^{u}$ for $a l\left(x^{2}+y^{2}<1 \Leftrightarrow a=-2\right.$ and $4 a b c=-1 \Leftrightarrow a=-2$ and $h c=\frac{1}{8}$
As $a \neq 0, u(x, y)=0$ for all $x^{2}+y^{2}=1 \Leftrightarrow a \ln (b+c)=0 \Leftrightarrow b+c=1$

$$
\begin{aligned}
\left.\begin{array}{rl}
b c=\frac{1}{8} \Rightarrow c=\frac{1}{8 b} \\
b+c=1
\end{array}\right\} \Rightarrow b+\frac{1}{8 b}=1 \Rightarrow
\end{aligned} \begin{array}{r}
b^{2}-b+\frac{1}{8}=0 \Rightarrow \frac{1}{2}\left(1 \pm \frac{1}{\sqrt{2}}\right) \\
\\
\\
\\
\\
\text { (thence, }(a, b, c)=\frac{1}{2}\left(17 \frac{1}{\sqrt{2}}\right)
\end{array}
$$

are the only triple) satisfying the conditions.

Aa. Find all pairs (u, v) of real numbers satisfying both of the equations $u v=6$ and $u^{2}-v^{2}=5$.

$$
\left.\left.\begin{array}{c}
u v=6 \Rightarrow v=\frac{6}{u} \\
u^{2}-v^{2}=5
\end{array}\right\} \Rightarrow u^{2}-\frac{36}{u^{2}}=5 \Rightarrow\left(u^{2}\right)^{2}-5 u^{2}-36=0\right] \begin{gathered}
u^{2}=9 \quad \text { or } u^{2}=-4 \otimes \\
\forall\left(u^{2}-9\right)\left(u^{2}+4\right)=0 \Rightarrow \begin{array}{l}
\Downarrow
\end{array} \\
\begin{array}{c}
u=3 \text { or } u=-3 \\
\Downarrow
\end{array} \quad \begin{array}{l}
v \\
v=2
\end{array} \quad v=-2
\end{gathered}
$$

$(u, v)=(3,2)$ and $(-3,-2)$ are the only solutions.
tb. Find $\left.\frac{\partial f}{\partial x}\right|_{(x, y)=(6,5)}$ if $f(x, y)$ is a differentiable function satisfying

$$
f\left(u v, u^{2}-v^{2}\right)=u^{3}+v^{3}
$$

for all $u>0$ and $v>0$.

$$
\begin{align*}
& \text { (*) } \xrightarrow{\frac{\partial}{\partial u}} \\
& \left.\begin{array}{ll}
& f_{1}\left(u v, u^{2}-v^{2}\right) \cdot v+f_{2}\left(u v, u^{2}-v^{2}\right) \cdot 2 u=3 u^{2} \\
\otimes & f_{1}\left(u v, u^{2}-v^{2}\right) \cdot u+f_{2}\left(u v, u^{2}-v^{2}\right) \cdot(-2 v)=3 v^{2}
\end{array}\right\} \\
& \xrightarrow{(u, v)=(3,2)}\left\{\begin{array}{l}
2 f_{1}(6,5)+6 f_{2}(6,5)=27 \\
3 f_{1}(6,5)-4 f_{2}(6,5)=12
\end{array}\right. \tag{1}\\
& 2 \times(1)+3 \times(2) \text { gives } 13 f_{1}(6,5)=\left.90 \Rightarrow \frac{\partial f}{\partial x}\right|_{(x, y)=(6,5)}=\frac{90}{13} \tag{2}
\end{align*}
$$

