Bilkent University
Quiz \# 02
Math 102 Section 03 Calculus II
20 February 2020
Instructor: Ali Sinan Sertöz

Solution Key

Q-1) The ellipsoid $16 x^{2}+4 y^{2}+3 z^{2}=160$ intersects the plane $x=3$ in an ellipse. Find parametric equations for the tangent line to this ellipse at the point $(3,1,2)$.

Solution:

First check that the point $(3,1,2)$ is on the ellipsoid. $16\left(3^{2}\right)+4\left(1^{2}\right)+3\left(2^{2}\right)=160$.
Then putting $x=3$ and simplifying we get

$$
\frac{y^{2}}{4}+\frac{3 z^{2}}{16}=1
$$

First Solution:

In the $y z$-plane situated at $x=3$, we can consider z as a function of y, and implicitly differentiate the above equation with respect to y to obtain z^{\prime} on the ellipse. This gives

$$
\frac{\partial z}{\partial y}=-\frac{4 y}{3 z}
$$

Evaluating at the point $(y, z)=(1,2)$ we get

$$
\left.\frac{\partial z}{\partial y}\right|_{(1,2)}=-\frac{2}{3}
$$

Finally, parametric equations for the tangent line to this ellipse at the point $(3,1,2)$ are:

$$
x(t)=3, \quad y(t)=1+t, \quad z(t)=2-\frac{2}{3} t, \quad t \in \mathbb{R}
$$

Second Solution:

We parametrize the above ellipse as

$$
y(\theta)=2 \cos \theta, \quad z(\theta)=\frac{4}{\sqrt{3}} \sin \theta
$$

The point $(y, z)=(1,2)$ corresponds to $\theta=\pi / 3$. We have

$$
y^{\prime}(\theta)=-2 \sin \theta, \quad z^{\prime}(\theta)=\frac{4}{\sqrt{3}} \cos \theta, \quad \text { and } \quad y^{\prime}(\pi / 3)=-\sqrt{3}, \quad z^{\prime}(\pi / 3)=\frac{2}{\sqrt{3}} .
$$

Hence parametric equations for the tangent line at $(3,1,2)$ are

$$
x(s)=3, \quad y(s)=1-\sqrt{3} s, \quad z(s)=2+\frac{2}{\sqrt{3}} s, \quad s \in \mathbb{R}
$$

Note that $s=-t / \sqrt{3}$ gives the previous parametrization.

