Bilkent University

Quiz \# 03
Math 102 Section 03 Calculus II
27 February 2020 Instructor: Ali Sinan Sertöz

Solution Key

Q-1) Suppose that $F(x, y, z)=x^{3}+y^{2}-z^{4}-236=0$ defines z as a differentiable function of x and y. Further assume that x and y are functions of the variables s and t as follows.

$$
\begin{aligned}
x(s, t) & =2+t^{3}+s t^{2}+s^{4} \\
y(s, t) & =3+5 t+12 s+3 t^{3}+7 t^{3} s^{4}+50 s^{2} t+2020 s^{4} t^{5}
\end{aligned}
$$

Taking $z>0$, calculate $\left.\frac{\partial z}{\partial t}\right|_{(s, t)=(1,0)}$.
Solution:

We note that $x(1,0)=3$, and $y(1,0)=15$.
From $F(3,15, z)=0$ we get $z(1,0)=2$, since we are interested in the case when $z>0$.
Since x, y and hence z are functions of s and t, we take the partial derivative with respect to t of both sides of the equation $F(x, y, z)=0$ to get

$$
\begin{equation*}
3 x^{2} x_{t}+2 y y_{t}-4 z^{3} z_{t}=0 . \tag{*}
\end{equation*}
$$

We also find directly that

$$
x_{t}=3 t^{2}+2 s t, \quad y_{t}=5+9 t^{2}+21 t^{2} s^{3}+50 s^{2}+10100 s^{4} t^{4}
$$

and

$$
x_{t}(1,0)=0, \quad y_{t}(1,0)=55 .
$$

Putting these values in (*), we get

$$
z_{t}(1,0)=\frac{825}{16}
$$

