Bilkent University

Math 102 Section 03 Calculus II
5 March 2020
Instructor: Ali Sinan Sertöz
Solution Key

Q-1) Let $F(x, y, z)=7 x^{3}+2 x y-4 y^{2}+5 x y z+3 z^{6}$. Assume that $F(x, y, z)+12=0$ defines z as a differentiable function of x and y at the point $p_{0}=(1,2,-1)$.
(i) Write an equation for the tangent plane to the surface $F(x, y, z)+12=0$ at the point $p_{0}=(1,2,-1)$.
(ii) Calculate $\left.\frac{\partial z}{\partial x}\right|_{p_{0}}$ and $\left.\frac{\partial z}{\partial y}\right|_{p_{0}}$.
(iii) Write a linearization of z at p_{0}.
(iv) How does your answer to (i) relate to your answer to (iii)?

Solution:

(i) First check that $F(1,2,-1)+12=0$, so the point p_{0} is on the surface. An equation for the tangent plane at p_{0} is

$$
\nabla F\left(p_{0}\right) \cdot\left(p-p_{0}\right)=0
$$

where $\nabla F=\left(F_{x}, F_{y}, F_{z}\right)$ is the gradient vector and $p=(x, y, z)$. We calculate the gradient vector as

$$
\nabla F=\left(21 x^{2}+2 y+5 y z, \quad 2 x-8 y+5 x z, \quad 5 x y+18 z^{5}\right), \text { and } \nabla F\left(p_{0}\right)=(15,-19,-8)
$$

An equation for the tangent plane at p_{0} then becomes

$$
\begin{equation*}
15 x-19 y-8 z+15=0 \tag{*}
\end{equation*}
$$

(ii) To calculate $\left.\frac{\partial z}{\partial x}\right|_{p_{0}}$ we either take the derivative of both sides of $F(x, y, z)+12=0$ with respect to x, treating z as a function of x and y, and then substitute p_{0} to solve for $\left.\frac{\partial z}{\partial x}\right|_{p_{0}}$, or we use the shorthand formula $z_{x}=-F_{x} / F_{z}$ and substitute p_{0}. Similarly for z_{y} at p_{0}. The required numbers are already calculated as entries of $\nabla F\left(p_{0}\right)$ above. Hence

$$
\left.\frac{\partial z}{\partial x}\right|_{p_{0}}=\frac{15}{8},\left.\quad \frac{\partial z}{\partial y}\right|_{p_{0}}=-\frac{19}{8}
$$

(iii) The required linearization is of the form

$$
z(x, y)=z\left(p_{0}\right)+z_{x}\left(p_{0}\right)(x-1)+z_{y}\left(p_{0}\right)(y-2)
$$

which becomes after substitution

$$
\begin{equation*}
z=-1+\frac{15}{8}(x-1)-\frac{19}{8}(y-2) . \tag{**}
\end{equation*}
$$

(iv) If you simplify equation $(* *)$, you will get exactly the equation $(*)$.

