

Bilkent University

Quiz \# 05
Math 102 Section 03 Calculus II
12 March 2020
Instructor: Ali Sinan Sertöz
Solution Key

Q-1) Let $f(x, y)=x^{3}+x y^{2}+y^{2}-3 x$. Classify the critical points of f.
Hint: $f(-1+s, 0)-f(-1,0)=s^{2}(s-3)$ and $f\left(-1+\frac{t^{2}}{3}, t\right)-f(-1,0)=\frac{t^{6}}{26}$.

Solution:

Solving $f_{x}=3 x^{2}+y^{2}-3=0$ and $f_{y}=2 x y+2 y=0$ simultaneously, we get $(1,0)$ and $(-1,0)$ as the only critical points.

To classify these critical points we use the second derivative test.
$f_{x x}=6 x, f_{x y}=2 y, f_{y y}=2 x+2$, and $\Delta=f_{x x} f_{y y}-f_{x y}^{2}=12 x^{2}+12 x-4 y^{2}$.
Since $\Delta(1,0)=24>0$, and $f_{x x}(0,1)=6>0$, the critical point $(1,0)$ is a local minimum point.
Since $\Delta(-1,0)=0$, the test fails at this point. Hence we must examine the behaviour of f around the point $(-1,0)$.

Using the first hint, we see that $f(-1+s, 0)-f(-1,0)=s^{2}(s-3) \leq 0$ for all s with $-3<s<3$.
This shows that in every neighborhood of $(-1,0)$, there are points (x, y), namely $(-1+s, 0)$, such that $f(x, y) \leq f(-1,0)$.

Using the second hint we see that $f\left(-1+\frac{t^{2}}{3}, t\right)-f(-1,0)=\frac{t^{6}}{26} \geq 0$.
This shows that in every neighborhood of $(-1,0)$, there are points (x, y), namely $\left(-1+t^{2} / 3, t\right)$, such that $f(x, y) \geq f(-1,0)$.

These two properties show that the critical point $(-1,0)$ is a saddle point.

The graph shows how the surface $z=f(x, y)$ looks like around $(-1,0)$.

