Bilkent University

Quiz \# 06
Math 102 Section 03 Calculus II
2 April 2020
Instructor: Ali Sinan Sertöz

Solution Key

Q-1) Let S_{R} be the sphere given by $x^{2}+y^{2}+z^{2}=R^{2}$, where $R>0$. For any h with $0 \leq h \leq 2 R$, let V_{h} denote the volume of the region that lies inside the sphere S_{R} and between the planes $z=R$ and $z=R-h$. Calculate V_{h}.

Solution:

The plane $z=R$ touches the sphere S_{R} at its North pole. The plane $z=R-h$ cuts the sphere along a circle whose equation is $x^{2}+y^{2}+(R-h)^{2}=R^{2}$, or equivalently $x^{2}+y^{2}=a^{2}$ where $a=\sqrt{2 R h-h^{2}}$. Now we can calculate the volume using cylindrical coordinates.

Notice that an arbitrary arrow parallel to the z-axis enters the region when $z=R-h$, and leaves the region when $z=\sqrt{R^{2}-x^{2}-y^{2}}=\sqrt{R^{2}-r^{2}}$.

Moreover, the shadow of the region whose volume we calculate is given in the $x y$-plane, as above, $x^{2}+y^{2}=a^{2}$ where $a=\sqrt{2 R h-h^{2}}$.

$$
\begin{aligned}
V_{h} & =\int_{0}^{2 \pi} \int_{0}^{\sqrt{2 R h-h^{2}}} \int_{R-h}^{\sqrt{R^{2}-r^{2}}} r d z d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{\sqrt{2 R h-h^{2}}}\left[r \sqrt{R^{2}-r^{2}}-(R-h) r\right] d r d \theta \\
& =\int_{0}^{2 \pi}\left(-\frac{1}{3}\left(R^{2}-r^{2}\right)^{3 / 2}-\left.(R-h) \frac{r^{2}}{2}\right|_{0} ^{\sqrt{2 R h-h^{2}}}\right) d \theta \\
& =\int_{0}^{2 \pi}\left(\frac{R h^{2}}{2}-\frac{h^{3}}{6}\right) d \theta \\
& =2 \pi\left(\frac{R h^{2}}{2}-\frac{h^{3}}{6}\right) \\
& =\frac{\pi h^{2}}{3}(3 R-h)
\end{aligned}
$$

