

Bilkent University

Quiz # 06 Math 102 Section 03 Calculus II 2 April 2020 Instructor: Ali Sinan Sertöz Solution Key

Q-1) Let S_R be the sphere given by $x^2 + y^2 + z^2 = R^2$, where R > 0. For any h with $0 \le h \le 2R$, let V_h denote the volume of the region that lies inside the sphere S_R and between the planes z = R and z = R - h. Calculate V_h .

Solution:

The plane z = R touches the sphere S_R at its North pole. The plane z = R - h cuts the sphere along a circle whose equation is $x^2 + y^2 + (R - h)^2 = R^2$, or equivalently $x^2 + y^2 = a^2$ where $a = \sqrt{2Rh - h^2}$. Now we can calculate the volume using cylindrical coordinates.

Notice that an arbitrary arrow parallel to the z-axis enters the region when z = R - h, and leaves the region when $z = \sqrt{R^2 - x^2 - y^2} = \sqrt{R^2 - r^2}$.

Moreover, the shadow of the region whose volume we calculate is given in the xy-plane, as above, $x^2 + y^2 = a^2$ where $a = \sqrt{2Rh - h^2}$.

$$\begin{split} V_h &= \int_0^{2\pi} \int_0^{\sqrt{2Rh-h^2}} \int_{R-h}^{\sqrt{R^2-r^2}} r dz \, dr \, d\theta \\ &= \int_0^{2\pi} \int_0^{\sqrt{2Rh-h^2}} \left[r \sqrt{R^2 - r^2} - (R-h)r \right] \, dr \, d\theta \\ &= \int_0^{2\pi} \left(-\frac{1}{3} (R^2 - r^2)^{3/2} - (R-h) \frac{r^2}{2} \Big|_0^{\sqrt{2Rh-h^2}} \right) \, d\theta \\ &= \int_0^{2\pi} \left(\frac{Rh^2}{2} - \frac{h^3}{6} \right) \, d\theta \\ &= 2\pi \left(\frac{Rh^2}{2} - \frac{h^3}{6} \right) \\ &= \frac{\pi h^2}{3} (3R-h). \end{split}$$