Instructor: Ali Sinan Sertöz

Solution Key

Q-1) Consider the sequence defined by

$$
a_{0}=6, \quad a_{n}=\sqrt{6+a_{n-1}}, n \geq 1 .
$$

(i) Show that the sequence is decreasing.
(ii) Show that the sequence is bounded.
(iii) Explain why the sequence converges or diverges.
(iv) Assuming that the sequence converges, find $\lim _{n \rightarrow \infty} a_{n}$.

Grading: (i) 4 points, (ii) 1 point, (iii) 1 point, (iv) 4 points

Solution:

(i) We do this by induction.

For $n=1$ we have $a_{1}=\sqrt{6+a_{0}}=2 \sqrt{3}<a_{0}$.
We assume that $a_{n}<a_{n-1}$. Then $a_{n+1}=\sqrt{6+a_{n}}<\sqrt{6+a_{n-1}}=a_{n}$.
Hence by induction, $a_{n}<a_{n-1}$ for all $n \geq 1$, and the sequence is decreasing.
(ii) We clearly have $0<a_{n}<6$, so the sequence is bounded.
(iii) Since every monotone, bounded sequence converges, our sequence being monotone by (i), and bounded by (ii), converges.
(iv) Let $\lim _{n \rightarrow \infty} a_{n}=L$. Taking the limit of both sides of $a_{n}=\sqrt{6+a_{n-1}}$ as $n \rightarrow \infty$, we get $L=$ $\sqrt{6+L}$. This gives the quadratic equation $L^{2}-L-6=0$, whose roots are -2 and 3 . Since $a_{n}>0$, we must have $L \geq 0$. Hence $L=3$.

