Quiz \# 09
Math 102 Section 03 Calculus II
30 April 2020
Instructor: Ali Sinan Sertöz

Solution Key

Q-1)

(i) Find all real numbers $a \geq 0$ such that the series $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{a}}$ converges.
(ii) Find all real numbers $a \geq 0$ such that the series $\sum_{n=2}^{\infty} \frac{(\ln n)^{a}}{n^{3}}$ converges.

Solution:

(i) We use the Integral Test. When $a=1$ we have

$$
\int_{2}^{\infty} \frac{d x}{x \ln x}=\left(\left.\ln \ln x\right|_{2} ^{\infty}\right)=\infty
$$

hence the series diverges when $a=1$.
When $a \geq 0$ but $a \neq 1$ we have

$$
\int_{2}^{\infty} \frac{d x}{x(\ln x)^{a}}=\left(\left.\frac{(\ln x)^{1-a}}{1-a}\right|_{2} ^{\infty}\right)= \begin{cases}\infty & \text { if } 0 \leq a<1 \\ \text { finite } & \text { if } a>1\end{cases}
$$

We then conclude that the series converges only when $a>1$.
(ii) We limit-compare with $\sum 1 / n^{2}$.

$$
\lim _{x \rightarrow \infty} \frac{(\ln x)^{a} / x^{3}}{1 / x^{2}}=\lim _{x \rightarrow \infty} \frac{(\ln x)^{a}}{x}=0, \quad \text { By L'Hospital, for all } a \geq 0
$$

which means

$$
\frac{(\ln x)^{a}}{x^{3}}<\frac{1}{x^{2}}, \quad \text { for all large } x
$$

Hence

$$
\sum_{n=2}^{\infty} \frac{(\ln n)^{a}}{x^{3}} \quad \text { converges for all } a \geq 0
$$

