Bilkent University
Quiz \# 10
Math 102 Section 03 Calculus II
7 May 2020
Instructor: Ali Sinan Sertöz

Solution Key

Q-1) Consider the power series $\sum_{n=1}^{\infty} \frac{(n!)^{2020}}{(2020 n)!} x^{n}$.
(i) Find the radius of convergence R of this series.
(ii) Find if the series converges when $x=R$, and when $x=-R$.

Grading: (i) 8 points, (ii) $1+1$ points

Solution:

(i) Let $a_{n}=\frac{(n!)^{k}}{(k n)!} x^{n}$, where $k=2020$. We use the Ratio test for absolute convergence.

$$
\begin{align*}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty} \frac{[(n+1)!]^{k}(k n)!}{[k(n+1)]!(n!)^{k}}|x| \\
& =\lim _{n \rightarrow \infty} \frac{(n+1)^{k}}{(k n+1)(k n+2) \cdots(k n+k)}|x| \\
& =\lim _{n \rightarrow \infty}\left(\frac{n+1}{k n+1}\right) \lim _{n \rightarrow \infty}\left(\frac{n+1}{k n+2}\right) \cdots \lim _{n \rightarrow \infty}\left(\frac{n+1}{k n+k}\right)|x| \tag{*}\\
& =\left(\frac{1}{k}\right)\left(\frac{1}{k}\right) \cdots\left(\frac{1}{k}\right)|x| \\
& =\left(\frac{1}{k}\right)^{k}|x|<1,
\end{align*}
$$

gives $|x|<k^{k}$ for absolute convergence. Hence $R=k^{k}=2020^{2020}$.
(ii) When you put $x=k^{k}$ in (*) in the above equation, without the limit operation, you get

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{k n+k}{k n+1} \frac{k n+k}{k n+2} \cdots \frac{k n+k}{k n+k}>1,
$$

which shows that $\left|a_{n+1}\right|>\left|a_{n}\right|$ when $x= \pm k^{k}$. Hence the general term does not go to zero and the series diverges at the end points.

