

Bilkent University

Quiz # 10 Math 102 Section 03 Calculus II 7 May 2020 Instructor: Ali Sinan Sertöz Solution Key

- **Q-1**) Consider the power series $\sum_{n=1}^{\infty} \frac{(n!)^{2020}}{(2020n)!} x^n$.
 - (i) Find the radius of convergence R of this series.
 - (ii) Find if the series converges when x = R, and when x = -R.

Grading: (i) 8 points, (ii) 1+1 points

Solution:

(i) Let $a_n = \frac{(n!)^k}{(kn)!} x^n$, where k = 2020. We use the Ratio test for absolute convergence.

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{\left[(n+1)! \right]^k (kn)!}{[k(n+1)]! (n!)^k} |x|$$

$$= \lim_{n \to \infty} \frac{(n+1)^k}{(kn+1)(kn+2)\cdots(kn+k)} |x|$$

$$= \lim_{n \to \infty} \left(\frac{n+1}{kn+1} \right) \lim_{n \to \infty} \left(\frac{n+1}{kn+2} \right) \cdots \lim_{n \to \infty} \left(\frac{n+1}{kn+k} \right) |x| \qquad (*)$$

$$= \left(\frac{1}{k} \right) \left(\frac{1}{k} \right) \cdots \left(\frac{1}{k} \right) |x|$$

$$= \left(\frac{1}{k} \right)^k |x| < 1,$$

gives $|x| < k^k$ for absolute convergence. Hence $R = k^k = 2020^{2020}$.

(ii) When you put $x = k^k$ in (*) in the above equation, without the limit operation, you get

$$\left|\frac{a_{n+1}}{a_n}\right| = \frac{kn+k}{kn+1}\frac{kn+k}{kn+2}\cdots\frac{kn+k}{kn+k} > 1,$$

which shows that $|a_{n+1}| > |a_n|$ when $x = \pm k^k$. Hence the general term does not go to zero and the series diverges at the end points.