Quiz \# 01
Math 102 - Calculus II - Section 03
10 February 2022 Thursday
Instructor: Ali Sinan Sertöz

Solution Key

Q-1) In the following find the infinite sums explicitly if they exist and expalin why if they don't exist.
(a) $\sum_{n=2}^{\infty} 2^{n} 3^{1-n}$.
(b) $\sum_{n=1}^{\infty} \frac{n+3}{n(n+1)(n+2)}$.

Grading: $5+5$ points

Solutions:

(a)

$$
\sum_{n=2}^{\infty} 2^{n} 3^{1-n}=3 \sum_{n=2}^{\infty}\left(\frac{2}{3}\right)^{n}=3 \sum_{n=0}^{\infty}\left(\frac{2}{3}\right)^{n+2}=\frac{4}{3} \sum_{n=0}^{\infty}\left(\frac{2}{3}\right)^{n}=\frac{4}{3} \frac{1}{1-(2 / 3)}=4
$$

(b) First we apply partial fractions method to the general term to obtain

$$
\frac{n+3}{n(n+1)(n+2)}=\frac{(3 / 2)}{n}-\frac{2}{n+1}+\frac{(1 / 2)}{n+2}
$$

The sequence of partial sums then becomes

$$
s_{n}=\sum_{k=1}^{n} \frac{k+3}{k(k+1)(k+2)}=\frac{5}{4}-\frac{2 n+5}{2(n+1)(n+2)} .
$$

Hence

$$
\sum_{n=1}^{\infty} \frac{n+3}{n(n+1)(n+2)}=\lim _{n \rightarrow \infty} s_{n}=\frac{5}{4}
$$

