Bilkent University
Quiz \# 02
Math 102 - Calculus II - Section 03
17 February 2022 Thursday
Instructor: Ali Sinan Sertöz

Solution Key

Q-1)

(a) Find all values of $p>0$ for which the series $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{p}}$ converges.
(b) Show that the series $\sum_{n=2}^{\infty} \frac{(-1)^{n}}{n(\ln n)}$ converges.
(c) Let $s=\sum_{n=2}^{\infty} \frac{(-1)^{n}}{n(\ln n)}$ and $s_{m}=\sum_{n=2}^{m} \frac{(-1)^{n}}{n(\ln n)}$. If $4<\ln 100<5$, find an upper bound for $\left|s-s_{99}\right|$.

Grading: $3+4+3$ points

Solutions:

(a) We consider the decreasing and continuous function $f(x)=\frac{1}{x(\ln x)^{p}}$ and use the integral test. When $p \neq 1$,

$$
\int_{2}^{\infty} \frac{1}{x(\ln x)^{p}} d x=\left(\left.\frac{(\ln x)^{1-p}}{1-p}\right|_{2} ^{\infty}\right)
$$

This is finite only when $p>1$. On the other hand when $p=1$

$$
\int_{2}^{\infty} \frac{1}{x(\ln x)} d x=\left(\left.\ln \ln x\right|_{2} ^{\infty}\right)=\infty
$$

Hence this series converges only for $p>1$, by the integral test
(b) Let $f(x)=\frac{1}{x \ln x}$, for $x \geq 2$. We have

$$
f^{\prime}(x)=-\frac{\ln x+1}{(x \ln x)^{2}}<0
$$

so the general term $a_{n}=\frac{1}{n \ln n}$ is decreasing. Moreover we clearly have

$$
\lim _{n \rightarrow \infty} a_{n}=0
$$

Hence the given series converges by the Alternating Series Test.
(c) We know that when an alternating series converges by the Alternating Series Test then, also using $4<\ln 100<5$, we get

$$
\left|s-s_{99}\right|<a_{100}=\frac{1}{100 \ln 100}<\frac{1}{400}=0.0025 .
$$

