Quiz \# 03
Math 102 - Calculus II - Section 03
24 February 2022 Thursday Instructor: Ali Sinan Sertöz

Solution Key

Q-1) Consider the power series $\sum_{n=0}^{\infty}(-1)^{n} x^{2^{n}}$.
(a) Find the radius of convergence R of this power series.
(b) Check for convergence at both end points, i.e. when $|x|=R$.

Grading: $5+5$ points

Solutions:

(a) Let

$$
a_{n}= \begin{cases}1 & \text { when } n=2^{k} \text { for some positive integer } k \\ 0 & \text { otherwise }\end{cases}
$$

Then

$$
\sum_{n=0}^{\infty}(-1)^{n} x^{2^{n}}=\sum_{n=0}^{\infty}(-1)^{\epsilon_{n}} a_{n} x^{n}, \text { where } \epsilon_{n}= \begin{cases}k & \text { if } n=2^{k} \\ 0 & \text { if } n \neq 2^{k}\end{cases}
$$

Finally note that

$$
\left|a_{n} x^{n}\right|=\left\{\begin{array}{ll}
\left|x^{n}\right| & \text { if } n=2^{k} \\
0 & \text { if } n \neq 2^{k}
\end{array} \leq\left|x^{n}\right|\right.
$$

Then using direct comparison with the geometric series $\sum_{n=0}^{\infty}|x|^{n}$ which converges for $|x|<1$, we conclude that our series converges absolutely for $|x|<1$.

Hence the radius of convergence is $R=1$.
(b) When $|x|=1$, our series becomes $1-1+1-1+\cdots$ and diverges since the general term does not converge to zero.

Alternate solution (sketch): Let $a_{n}=x^{2^{n}}$ Then using the Ratio Test we get

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=x^{2}<1
$$

for convergence. At the end points the general term does not go to zero.

