Quiz \# 05
Math 102 - Calculus II - Section 03
17 March 2022 Thursday
Instructor: Ali Sinan Sertöz

Solution Key

Q-1) We are given two planes $P 1$ and $P 2$ by the equations

$$
\begin{array}{ll}
P 1: & 3 x+5 y+7 z=34 \\
P 2: & 4 x+6 y+z=40 .
\end{array}
$$

(a) Find a point which lies on both of these planes.
(b) Write parametric equations for the line of intersection of these two planes.
(c) Write an equation of the form $A x+B y+C z=D$ for the plane which passes through the point $(1,2,6)$ and is perpendicular to the line of intersection of the planes $P 1$ and $P 2$.

Grading: $2+4+4$ points

Solutions:

(a) This you do by trial and error. One such point is $q=(-2,8,0)$.
(b) The vectors $N 1=(3,5,7)$ and $N 2=(4,6,1)$ are orthogonal to the planes $P 1$ and $P 2$ respectively. The vector

$$
V=N 1 \times N 2=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
3 & 5 & 7 \\
4 & 6 & 1
\end{array}\right|=(-37,25,-2)
$$

is parallel to these two planes and is in the direction of the line of intersection. Hence parametric equations for this line is

$$
x=-2-37 t, \quad y=8+25 t, \quad z=-2 t, \quad t \in \mathbb{R}
$$

(c) The above vector V is orthogonal to this plane hence and equation will be

$$
V \cdot(x, y, z)=V \cdot(1,2,6)
$$

which simplifies to

$$
-37 x+25 y-2 z=1
$$

An alternate way to obtain V : Solve the system

$$
\begin{gathered}
3 x+5 y+7 z=34 \\
4 x+6 y+z=40 .
\end{gathered}
$$

for x and y in terms of z to obtain

$$
x=-2+\frac{37}{2} z, y=8-\frac{25}{2} z
$$

Putting $z=0$ and $z=2$ gives us two points along the line L of intersection.

$$
p=(-2,8,0) \text { and } q=(35,-17,2) .
$$

Then $V=p-q=(-37,25,-2)$.

