Bilkent University
Quiz \# 06
Math 102 - Calculus II - Section 03
24 March 2022 Thursday Instructor: Ali Sinan Sertöz

Solution Key

Q-1)

(a) Calculate, if it exists, the limit: $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}+3 x y+y}{3 x^{2}+5 y^{2}}$.
(b) Find all integers $k>0$ such that the following limit exists, and then find the limit.

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{y^{2} \sin ^{k} x}{x^{4}+y^{4}}
$$

Grading: $3+7$ points

Solutions:

(a) Approach the origin along the y-axis. Then

$$
\left.\frac{x^{2}+3 x y+y}{3 x^{2}+5 y^{2}}\right|_{x=0}=\frac{y}{5 y^{2}}=\frac{1}{5 y}
$$

and the limit as $y \rightarrow 0$ does not exit. Hence the limit does not exist by One Path Test.
(b)

$$
\frac{y^{2} \sin ^{k} x}{x^{4}+y^{4}}=\frac{y^{2} x^{k}}{x^{4}+y^{4}}\left(\frac{\sin x}{x}\right)^{k}
$$

$\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$ for all positive integers k.
On the other hand

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{y^{2} x^{k}}{x^{4}+y^{4}}=0 \text { if and only if } \frac{k}{4}+\frac{2}{4}>1
$$

This forces $k>2$. Here we used the Sertöz Theorem.
Alternatively you can argue as follows. If the limit exists, then it exists and is the same along every path. In particular let $y=x$. Then

$$
\left.\frac{y^{2} x^{k}}{x^{4}+y^{4}}\right|_{y=x}=\frac{x^{2+k}}{2 x^{4}}=\frac{x^{k}}{2 x^{2}},
$$

and this limit exists (as $x \rightarrow 0$) if and only if $k>2$.
Now if $k=2+m$ for some positive integer m, we have

$$
\frac{y^{2} x^{k}}{x^{4}+y^{4}}=\frac{x^{2} y^{2}}{x^{4}+y^{4}} x^{m}
$$

and using polar coordinates

$$
0<\left|\frac{x^{2} y^{2}}{x^{4}+y^{4}} x^{m}\right|=\left|\frac{\cos ^{2} \theta \sin ^{2} \theta}{\cos ^{4} \theta+\sin ^{4} \theta}\right||x| \leq \alpha|x| \rightarrow 0 \text { as }(x, y) \rightarrow(0,0)
$$

where α is an upper bound for the function $\frac{\cos ^{2} \theta \sin ^{2} \theta}{\cos ^{4} \theta+\sin ^{4} \theta}$. Note that since the denominator is bounded away from zero, this function is bounded.

Hence the limit exists if and only if $k>2$, and in that case the limit is zero.
For your information, here is a graph of the function $\frac{\cos ^{2} \theta \sin ^{2} \theta}{\cos ^{4} \theta+\sin ^{4} \theta}$ showing that $\alpha=1 / 2$ works.

