Bilkent University
Quiz \# 07
Math 102 - Calculus II - Section 03
31 March 2022 Thursday
Instructor: Ali Sinan Sertöz

Solution Key

Q-1) Let S be the surface defined by $z=f(x, y)$ for some function f. We know that the line $\vec{r}(t)=$ $(1+4 t, 2+5 t, 3+6 t), t \in \mathbb{R}$, is tangent to S when $t=0$. We also know that the plane $x+2 y-z=2$ intersects S orthogonally at $(1,2,3)$.
(a) Find $f(1,2)$.
(b) Write an equation for the tangent plane of S at $(1,2, f(1,2))$ in the form $A x+B y+C z=D$ where $A \geq 0$.
(c) Using a linear approximation estimate $f\left(\frac{16}{17}, \frac{17}{10}\right)$.

Grading: $1+4+5$ points

Solutions:

(a) Since $\vec{r}(t)$ is tangent to the surface at $t=0, \vec{r}(0)=(1,2,3)$ is on the surface. Hence $f(1,2)=3$.
(b) The vector $\vec{r}(t)^{\prime}=(4,5,6)$ is tangent to S at $p_{0}=(1,2,3)$ and hence $(4,5,6)$ is orthogonal to the normal vector \vec{n} of S. Also the normal vector $\vec{u}=(1,2,-1)$ of the plane $x+2 y-z=2$ is also orthogonal to \vec{n}. Thus

$$
\vec{n}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
4 & 5 & 6 \\
1 & 2 & -1
\end{array}\right|=(-17,10,3)
$$

Then the equation of the tangent plane to S at $p_{0}=(1,2,3)$ is

$$
-17(x-1)+10(y-2)+3(z-3)=0
$$

or equivalently

$$
17 x-10 y-3 z=-12
$$

(c) From the above tangent equation we solve for z to find the linearization

$$
L(x, y)=z=4+\frac{17}{3} x-\frac{10}{3} y
$$

Then

$$
f\left(\frac{16}{17}, \frac{17}{10}\right) \approx L\left(\frac{16}{17}, \frac{17}{10}\right)=\frac{5}{3}
$$

