Quiz \# 09
Math 102 - Calculus II - Section 03
14 April 2022 Thursday
Instructor: Ali Sinan Sertöz

Solution Key

Q-1) Consider the function $f(x, y)=x^{2}-x y+y^{2}+9 x-6 y+19$.
(a) Find all critical points of f.
(b) Determine the nature of each critical point as local min or local max or saddle point.
(c) Show that f is unbounded from above.
(d) Show that $f(x, y) \geq-11$ for all $x, y \in \mathbb{R}$.
(Hint: Substituting $u+v$ for x, and $u-v$ for y may be helpful!)

Grading: $2+2+3+3$ points

Solutions:

(a) We solve the system

$$
f_{x}=2 x-y+9=0, \quad f_{y}=-x+2 y-6=0
$$

to find that $(-4,1)$ is the only critical point.
(b) To calculate the discriminant we first find the second derivatives as

$$
f_{x x}=2, \quad f_{y y}=2, \quad f_{x y}=-1
$$

Hence the discriminant is

$$
\Delta=f_{x x} f_{y y}-f_{x y}^{2}=3
$$

Since $f_{x x}>0$ and $f_{x y}>0$, the critical point $(-4,1)$ is a local minimum by the second derivative test.
(c) If we set $y=0$ and send x to infinity, we get

$$
\lim _{x \rightarrow \infty} f(x, 0)=\infty
$$

Hence f is unbounded from above.
(d) We have

$$
f(u+v, u-v)=u^{2}+3 v^{2}+3 u+15 v+19
$$

This shows that f cannot go to $-\infty$ along any path since the dominating terms are $u^{2}+3 v^{2}$ are always positive and go to ∞ as $|u|$ and $|v|$ go to infinity.

On the other hand $f(-4,1)=-2$ which is the local minimum which now we know must be the global minimum. Hence $f(x, y) \geq-2>-11$.

Note also that we can write, after completing to squares

$$
f(u+v, u-v)=\left(u+\frac{3}{2}\right)^{2}+3\left(v+\frac{5}{2}\right)^{2}-2,
$$

which immediately shows that $f(x, y) \geq-2$.

