Bilkent University
Quiz \# 10
Math 102 - Calculus II - Section 03
21 April 2022 Thursday
Instructor: Ali Sinan Sertöz

Solution Key

Q-1) Evaluate

$$
I=\int_{\frac{-7 \sqrt{\pi}}{2}}^{0} \int_{-y / 7}^{\sqrt{\pi} / 2} \cos x^{2} d x d y+\int_{0}^{\frac{13 \sqrt{\pi}}{2}} \int_{y / 13}^{\sqrt{\pi} / 2} \cos x^{2} d x d y
$$

using the following guide:
(a) Sketch the region covered by the above integrals.
(b) Write the above I as a single integral with the reverse order of integration.
(c) Evaluate (easily!) the integral you found in the above step.

Grading: $4+3+3$ points

Solutions:

(a) The region of integration is shaded in the figure below.

(b) When we reverse the order of integration we get

$$
I=\int_{0}^{\sqrt{\pi} / 2} \int_{-7 x}^{13 x} \cos x^{2} d y d x
$$

(c) We can now evaluate the above integral.

$$
\begin{aligned}
I & =\int_{0}^{\sqrt{\pi} / 2} \int_{-7 x}^{13 x} \cos x^{2} d y d x \\
& =\int_{0}^{\sqrt{\pi} / 2}\left(\left.y \cos x^{2}\right|_{y=-7 x} ^{y=13 x}\right) d x \\
& =\int_{0}^{\sqrt{\pi} / 2}\left(13 x \cos x^{2}+7 x \cos x^{2}\right) d x \\
& =\left(\frac{13}{2} \sin x^{2}+\left.\frac{7}{2} \sin x^{2}\right|_{x=0} ^{x=\sqrt{\pi} / 2}\right) \\
& =\frac{13}{2} \frac{1}{\sqrt{2}}+\frac{7}{2} \frac{1}{\sqrt{2}} \\
& =\frac{10}{\sqrt{2}}=5 \sqrt{2} \approx 7.071 .
\end{aligned}
$$

