

Bilkent University

Quiz # 1 Math 102-Section 09 13 March 2023, Monday, Moodle Quiz Instructor: Ali Sinan Sertöz Solution Key

Q-1) We have two sequences
$$a_n = \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdots (2n)}$$
 and $b_n = \frac{2 \cdot 4 \cdot 6 \cdots (2n)}{3 \cdot 5 \cdot 7 \cdots (2n+1)}$, $n \ge 1$.

- (i) Show that $\frac{n}{n+1} < \frac{n+1}{n+2}$ for all $n \ge 1$.
- (ii) Show that $a_n < b_n, n \ge 1$
- (iii) Show that $a_n < \frac{1}{\sqrt{2n+1}}, n \ge 1$.
- (iv) Show that $\lim_{n\to\infty} a_n = 0$.

To prove an item you can use the statements preceding it. Show your work in detail. Correct answers without detailed explanation do not get any credit. Grading: 1+4+4+1=10 points.

Solution:

(i) Since $n(n+2) = n^2 + 2n < n^2 + 2n + 1 = (n+1)^2$, the claimed inequality follows.

(ii) By (i) we have $\frac{1}{2} < \frac{2}{3}, \ \frac{3}{4} < \frac{4}{5}, \dots, \frac{2n-1}{2n} < \frac{2n}{2n+1}.$

All these inequalities follow from (i).

Now multiplying side by side we get $a_n < b_n$, for all $n \ge 1$

(iii)

$$a_n^2 = a_n \cdot a_n \quad < \quad a_n \cdot b_n, \text{ since by (ii) } a_n < b_n.$$

=
$$\frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdots (2n)} \cdot \frac{2 \cdot 4 \cdot 6 \cdots (2n)}{3 \cdot 5 \cdot 7 \cdots (2n+1)}$$

=
$$\frac{1}{2n+1}, \text{ for all } n \ge 1.$$

This shows that $a_n < \frac{1}{\sqrt{2n+1}}$, for $n \ge 1$.

(iv) Since obviously $a_n > 0$, using (iii) we have $0 < a_n < \frac{1}{\sqrt{2n+1}}$. Now using the squeeze theorem we get $\lim_{n \to \infty} a_n = 0$.