Quiz \# 1
Math 102-Section 09
13 March 2023, Monday, Moodle Quiz
Instructor: Ali Sinan Sertöz

Solution Key

Q-1) We have two sequences $a_{n}=\frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{2 \cdot 4 \cdot 6 \cdots(2 n)}$ and $b_{n}=\frac{2 \cdot 4 \cdot 6 \cdots(2 n)}{3 \cdot 5 \cdot 7 \cdots(2 n+1)}, n \geq 1$.
(i) Show that $\frac{n}{n+1}<\frac{n+1}{n+2}$ for all $n \geq 1$.
(ii) Show that $a_{n}<b_{n}, n \geq 1$
(iii) Show that $a_{n}<\frac{1}{\sqrt{2 n+1}}, n \geq 1$.
(iv) Show that $\lim _{n \rightarrow \infty} a_{n}=0$.

To prove an item you can use the statements preceding it.
Show your work in detail. Correct answers without detailed explanation do not get any credit.
Grading: $1+4+4+1=10$ points.

Solution:

(i) Since $n(n+2)=n^{2}+2 n<n^{2}+2 n+1=(n+1)^{2}$, the claimed inequality follows.
(ii) By (i) we have $\frac{1}{2}<\frac{2}{3}, \frac{3}{4}<\frac{4}{5}, \ldots, \frac{2 n-1}{2 n}<\frac{2 n}{2 n+1}$.

All these inequalities follow from (i).
Now multiplying side by side we get $a_{n}<b_{n}$, for all $n \geq 1$
(iii)

$$
\begin{aligned}
a_{n}^{2}=a_{n} \cdot a_{n} & <a_{n} \cdot b_{n}, \text { since by (ii) } a_{n}<b_{n} . \\
& =\frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{2 \cdot 4 \cdot 6 \cdots(2 n)} \cdot \frac{2 \cdot 4 \cdot 6 \cdots(2 n)}{3 \cdot 5 \cdot 7 \cdots(2 n+1)} \\
& =\frac{1}{2 n+1}, \text { for all } n \geq 1
\end{aligned}
$$

This shows that $a_{n}<\frac{1}{\sqrt{2 n+1}}$, for $n \geq 1$.
(iv) Since obviously $a_{n}>0$, using (iii) we have $0<a_{n}<\frac{1}{\sqrt{2 n+1}}$. Now using the squeeze theorem we get $\lim _{n \rightarrow \infty} a_{n}=0$.

