Bilkent University

Quiz \# 2

Math 102-Section 11
21 March 2023, Tuesday, Moodle Quiz
Instructor: Ali Sinan Sertöz
Solution Key

Q-1) Let $f(x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}$.
(i) Find all x for which this series converges absolutely.
(ii) Show that $f(x)$ satisfies the differential equation

$$
y^{\prime \prime}+y=0
$$

(iii) A theorem on differential equations says that if $g(x)$ is a solution of the above differential equation, then

$$
g(x)=A \cos x+B \sin x,
$$

where A and B are some constants. Show that $f(x)=\cos x$.
Show your work in detail. Correct answers without detailed explanation do not get any credit.
Grading: $4+3+3=10$ points.

Solution:

(i) Let $a_{n}=(-1)^{n} \frac{x^{2 n}}{(2 n)!}$. Then using the ratio test for absolute convergence we find

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{\left|x^{2}\right|}{(2 n+1)(2 n+2)} \rightarrow 0 \text { as } n \rightarrow \infty, \text { for all } x
$$

This shows that the series converges absolutely for all values of x.
(ii) Taking successive derivatives we have

$$
\begin{aligned}
f(x) & =1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\cdots+(-1)^{n} \frac{x^{2 n}}{(2 n)!}+(-1)^{n+1} \frac{x^{2 n+2}}{(2 n+2)!}+\cdots \\
f^{\prime}(x) & =-x+\frac{x^{3}}{3!}-\frac{x^{5}}{5!}-\cdots+(-1)^{n+1} \frac{x^{2 n+1}}{(2 n+1)!}+\cdots \\
f^{\prime \prime}(x) & =-1+\frac{x^{2}}{2!}-\frac{x^{4}}{4!}+\cdots+(-1)^{n+1} \frac{x^{2 n}}{(2 n)!}+\cdots
\end{aligned}
$$

We see that $f^{\prime \prime}(x)+f(x)=0$ as claimed.
(iii) By the quoted theorem we must have

$$
f(x)=A \cos x+B \sin x
$$

Calculating $f(0)$ and $f^{\prime}(0)$ first from the power series expansion and then from the above form we see that $A=1$ and $B=0$. Hence $f(x)=\cos x$.

