Bilkent University

Quiz \# 3
Math 102-Section 9
31 March 2023, Friday, Moodle Quiz
Instructor: Ali Sinan Sertöz

Solution Key

Q-1) Let $p_{0}=(-1,2,3), \vec{u}=(4,5,6)$ and $\vec{v}=(7,8,9)$. Let π be the name of the plane containing p_{0} and not intersecting the lines parallel to \vec{u} and \vec{v}. Write the equation of π in the format $x+B y+$ $C z=D$, where B, C, D are numbers.

Q-2) Let $u=(1,2,3), v=(4,5,6)$ and $w=(7,-8,-9)$. Let π be the name of the plane containing these points. Write the equation of π in the format $x+B y+C z=D$, where B, C, D are numbers.

Q-3) Let the parametric curve C be given as $p(t)=\left(t, t^{2}, t^{3}\right), t \in \mathbb{R}$. This is called the twisted cubic in \mathbb{R}^{3} since it cannot be embedded into \mathbb{R}^{2} without losing its geometric properties. Let L be the tangent line to C at $t=2$. Write vector, parametric and symmetric equations of L.
Show your work in detail. Correct answers without detailed explanation do not get any credit.
Grading: $3+3+4=10$ points.

Solution:

(1) Since π is parallel to \vec{u} and \vec{v}, the cross-product $\vec{u} \times \vec{v}$ gives us a normal direction

$$
\vec{u} \times \vec{v}=\left|\begin{array}{ccc}
\overrightarrow{\mathbf{i}} & \overrightarrow{\mathbf{j}} & \overrightarrow{\mathbf{k}} \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right|=(-3,6,-3)=-3(1,-2,1)
$$

so we can take $\vec{n}=(1,-2,1)$. Then an equation for π is of the form

$$
\vec{n} \cdot(x, y, z)=\vec{n} \cdot p_{0}
$$

which gives

$$
x-2 y+z=-2 .
$$

(2) Since $p=v-u=(3,3,3)$ and $q=w-u=(6,-10,-12)$ are parallel to π, their cross-product gives us a normal direction.

$$
p \times q=\left|\begin{array}{ccc}
\overrightarrow{\mathbf{i}} & \overrightarrow{\mathbf{j}} & \overrightarrow{\mathbf{k}} \\
3 & 3 & 3 \\
6 & -10 & -12
\end{array}\right|=(-6,54,-48)=-6(1,-9,8),
$$

so we can take $\vec{n}=(1,-9,8)$. Then an equation for π is of the form

$$
\vec{n} \cdot(x, y, z)=\vec{n} \cdot u,
$$

where clearly $\vec{n} \cdot u=\vec{n} \cdot v=\vec{n} \cdot w=7$. This gives us

$$
x-9 y+8 z=7
$$

(3) Here $p^{\prime}(t)=\left(1,2 t, 3 t^{2}\right), p(2)=(2,4,8)$ and $p^{\prime}(2)=(1,4,12)$. A vector equation for the tangent line is

$$
L(t)=p(2)+p^{\prime}(2) t, t \in \mathbb{R}
$$

so we get

$$
L(t)=(2,4,8)+(t, 4 t, 12 t), t \in \mathbb{R}
$$

Parametric equations are then

$$
x(t)=2+t, y(t)=4+4 t, z(t)=8+12 t, t \in \mathbb{R}
$$

From these we can write the symmetric equations as

$$
x-2=\frac{y-4}{4}=\frac{z-8}{12}
$$

