Quiz \# 4
Math 102-Section 11
26 April 2023, Wednesday, Moodle Quiz
Instructor: Ali Sinan Sertöz
Solution Key

Q-1) Consider the function

$$
f(x, y)= \begin{cases}\left(x^{2}+y^{2}\right) \sin \frac{1}{x^{2}+y^{2}} & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{cases}
$$

(a) Calculate $f_{x}(0,0)$ and $f_{y}(0,0)$.
(b) Calculate $f_{x}(x, y)$ and $f_{y}(x, y)$ when $(x, y) \neq(0,0)$.
(c) Are f_{x} and f_{y} continuous at $(0,0)$?
(d) Is f differentiable at $(0,0)$?

Show your work in detail. Correct answers without detailed explanation do not get any credit.
Grading: $2+2+2+4=10$ points.

Solution:

(1-a)

$$
f_{x}(0,0)=\lim _{x \rightarrow 0} \frac{f(x, 0)-f(0,0)}{x}=\lim _{x \rightarrow 0} x \sin \frac{1}{x^{2}+y^{2}}=0, \quad \text { by the Squeeze Theorem. }
$$

Similarly $f_{y}(0,0)=0$.
(1-b) When $(x, y) \neq(0,0)$ we have

$$
f_{x}(x, y)=\frac{\partial}{\partial x}\left(\left(x^{2}+y^{2}\right) \sin \frac{1}{x^{2}+y^{2}}\right)=2 x \sin \frac{1}{x^{2}+y^{2}}-\frac{2 x}{x^{2}+y^{2}} \cos \frac{1}{x^{2}+y^{2}} .
$$

Similarly

$$
f_{y}(x, y)=\frac{\partial}{\partial y}\left(\left(x^{2}+y^{2}\right) \sin \frac{1}{x^{2}+y^{2}}\right)=2 y \sin \frac{1}{x^{2}+y^{2}}-\frac{2 y}{x^{2}+y^{2}} \cos \frac{1}{x^{2}+y^{2}} .
$$

(1-c) These are not continuous at the origin. For example for the continuity of $f_{x}(x, y)$ at the origin we must check if

$$
\lim _{(x, y) \rightarrow(0,0)} f_{x}(x, y) \stackrel{?}{=} f_{x}(0,0)=0
$$

However these limits do not exist. For example if we approach the origin along the x-axis as $x(n)=\left(\frac{1}{2 n \pi}\right)^{1 / 2}$, then

$$
\lim _{\substack{(x, y) \rightarrow(0,0) \\ x=x(n), y=0}} f(x, y)=\lim _{n \rightarrow \infty} 2 \sqrt{2 n \pi}=\infty .
$$

Similarly if we choose $x=0$ and $y=\left(\frac{1}{2 n \pi}\right)^{1 / 2}$, then

$$
\lim _{\substack{(x, y) \rightarrow(0,0) \\ x=x(n), y=0}} f(x, y)=\lim _{n \rightarrow \infty} 2 \sqrt{2 n \pi}=\infty
$$

(1-d) We now know that $f_{x}(0,0)=0$ and $f_{y}(0,0)=0$. Define two error functions as

$$
\epsilon_{1}(x, y)= \begin{cases}x \sin \frac{1}{x^{2}+y^{2}} & (x, y) \neq 0 \\ 0 & (x, y)=(0,0)\end{cases}
$$

and

$$
\epsilon_{2}(x, y)= \begin{cases}y \sin \frac{1}{x^{2}+y^{2}} & (x, y) \neq 0 \\ 0 & (x, y)=(0,0)\end{cases}
$$

Now we see that

$$
f(x, y)=f(0,0)+f_{x}(0,0) x+f_{y}(0,0) y+\epsilon_{1} x+\epsilon_{2} y
$$

Hense f is differentiable at the origin even though its partial derivatives are not continuous there.
Here is a graph of this function around the origin. Observe how the graph flattens out at the origin and there the plane $z=0$ becomes tangent to the surface.

