Bilkent University

Quiz \# 6
Math 102-Section 11
3 May 2023, Wednesday, Moodle Quiz
Instructor: Ali Sinan Sertöz
Solution Key

Q-1) Consider the function $f(x, y, z)=3 x^{2}+5 y^{2}-z$.
(a) Write the gradient $\nabla f(x, y, z)$.
(b) Write $\nabla f(2,1,17)$.
(c) Write the equation of the tangent plane to the surface $f(x, y, z)=0$ at the point $(2,1,17)$ in the form $z=A+B x+C y$, where A, B, C are real numbers.
(d) Find the x, y and z intercepts of this tangent plane.
(e) Calculate the volume of the pyramid bounded by this tangent plane and the $x=0, y=0$, $z=0$ planes. Write your answer in the form $\frac{D}{E}$ where D and E are positive integers with no common factor. (Hint: Volume of a pyramid is $\frac{1}{3} \times$ base area \times height.

Show your work in detail. Correct answers without detailed explanation do not get any credit.
Grading: $1+1+3+3+2=10$ points.

Solution:

$(1-\mathbf{a}) \nabla f(x, y, z)=(6 x, 10 y,-1)$.
(1-b) $\nabla f(2,1,17)=(12,10,-1)$.
(1-c) An equation of this tangent plane is of the form

$$
\nabla f(2,1,17) \cdot(x, y, z)=\nabla f(2,1,17) \cdot(2,1,17), \quad \text { or after expanding } 12 x+10 y-z=17
$$

which when expressed as in the problem takes the form

$$
z=-17+12 x+10 y
$$

(1-d) We use the equation $z=-17+12 x+10 y$. Putting in $y=z=0$ gives the x-intercept. Similarly for the y and z intercepts. These then turn out to be

$$
x_{0}=\frac{17}{12}, y_{0}=\frac{17}{10}, z_{0}=-17
$$

(1-e) The required volume is

$$
V=\frac{1}{3} \times \text { base area } \times \text { height }=\frac{1}{3} \times\left(\frac{1}{2}\left|x_{0}\right|\left|y_{0}\right|\right) \times\left(\left|z_{0}\right|\right)=\frac{4913}{720} .
$$

