Quiz \# 01
Math 102 Section 09 Calculus II
12 February 2024 Monday
Instructor: Ali Sinan Sertöz

Solution Key

Q-1)

(a) Does the series $\sum_{n=1}^{\infty} \frac{1}{n^{1 / n}}$ converge or diverge? If it converges find its sum.
(b) Does the series $\sum_{n=2}^{\infty} \frac{1}{n^{2}-1}$ converge or diverge? If it converges find its sum.
(c) Does the sequence $\left(\frac{n}{n+1}\right)^{n}$ converge or diverge? If it converges find its limit.

Show your work in detail. Correct answers with no justification will not get any credit.
Grading: $2+5+3=10$ points
Solution: (Grader: melis.gezer@bilkent.edu.tr)
(a) From the list of useful limits we know that $\lim _{n \rightarrow \infty} \frac{1}{n^{1 / n}}=1$. Since the general term of this series does not converge to zero the series diverges by the n-th Term Test.
(b) By the partial fractions technique we find that

$$
\frac{1}{n^{2}-1}=\frac{1}{(n-1)(n+1)}=\frac{1}{2}\left[\frac{1}{n-1}-\frac{1}{n+1}\right]
$$

Then the sequence of partial sums of this series is of the form

$$
s_{n}=\frac{1}{2}\left[\left(\frac{1}{1}-\frac{1}{3}\right)+\left(\frac{1}{2}-\frac{1}{4}\right)\left(+\frac{1}{3}-\frac{1}{5}\right)+\cdots+\left(\frac{1}{n-3}-\frac{1}{n-1}\right)+\left(\frac{1}{n-2}-\frac{1}{n}\right)+\left(\frac{1}{n-1}-\frac{1}{n+1}\right)\right]
$$

and after simplifying we get

$$
s_{n}=\frac{1}{2}\left[\frac{3}{2}-\frac{1}{n}-\frac{1}{n+1}\right] . \text { Thus } \lim _{n \rightarrow \infty} s_{n}=\frac{3}{4}
$$

(c) Note that $a_{n}=\left(\frac{n}{n+1}\right)^{n}=\frac{1}{\left(1+\frac{1}{n}\right)^{n}} \rightarrow \frac{1}{e}$ as $n \rightarrow \infty$, which we again recall from the list of useful limits.

