Quiz # 02 Math 102 Section 09 Calculus II 19 February 2024 Monday

Instructor: Ali Sinan Sertöz **Solution Key**

- **Q-1**) (a) Assume the fact that the function $f(x) = \frac{\ln x}{x^2}$ is positive, continuous and decreasing for $x \ge 3$. Use the Integral Test to decide if the series $\sum_{n=3}^{\infty} \frac{\ln n}{n^2}$ converges or diverges.
 - (b) Use the Direct Comparison Test to decide if the series $\sum_{n=3}^{\infty} \frac{\ln n}{n^2}$ converges or diverges.
 - (c) Use the Limit Comparison Test to decide if the series $\sum_{n=3}^{\infty} \frac{\ln n}{n^2}$ converges or diverges.

Show your work in detail. Correct answers with no justification will not get any credit. Grading: 4+3+3=10 points

Solution: (Grader: melis.gezer@bilkent.edu.tr)

(a) $\int \frac{\ln x}{x^2} dx = -\frac{\ln x}{x} + \int \frac{dx}{x^2} = -\left(\frac{1 + \ln x}{x}\right),$

where we used integration by parts with $u = \ln x$ and $dv = dx/x^2$. Then

$$\int_{3}^{\infty} \frac{\ln x}{x^{2}} dx = -\lim_{R \to \infty} \left(\frac{1 + \ln x}{x} \Big|_{3}^{R} \right) = \frac{1 + \ln 3}{3} < \infty.$$

Hence by the Integral Test $\sum_{n=3}^{\infty} \frac{\ln n}{n^2}$ converges.

(b) Since $\lim_{x \to \infty} \frac{\ln x}{x^{\alpha}} = 0$ for any $\alpha > 0$, we have $\ln x < x^{\alpha}$ for all large x. Let $\alpha = 1/2$. Since

$$0 < \frac{\ln n}{n^2} < \frac{n^{1/2}}{n^2} = \frac{1}{n^{3/2}}, \ \ \text{for all large } n,$$

and since $\sum \frac{1}{n^{3/2}}$ converges by p-test, our series $\sum_{n=3}^{\infty} \frac{\ln n}{n^2}$ converges by the Direct Comparison Test.

(c) Let $a_n = \frac{\ln n}{n^2}$ and $b_n = \frac{1}{n^{3/2}}$. Then since

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\ln n}{n^{1/2}} = 0,$$

and since $\sum b_n$ converges by p-test, our series $\sum_{n=3}^{\infty} \frac{\ln n}{n^2}$ converges by the Limit Comparison Test.