Quiz \# 05
Math 102 Section 09 Calculus II
11 March 2024 Monday
Instructor: Ali Sinan Sertöz

Solution Key

Q-1) Assume that y is an analytic function of x,

$$
y=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}+\cdots,
$$

and satisfies the initial value problem

$$
y^{\prime \prime}+4 y=0, y(0)=1, y^{\prime}(0)=0
$$

Show by induction that

$$
a_{2 n+1}=0 \text { and } a_{2 n}=(-1)^{n} \frac{4^{n}}{(2 n)!}, \text { where } n=0,1,2, \ldots
$$

Then evaluate $y(\pi / 6)$.
Show your work in detail. Correct answers with no justification will not get any credit.
Grading: $8+2=10$ points
Solution: (Grader: melis.gezer@bilkent.edu.tr)
We have

$$
\begin{aligned}
y & =a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+\cdots+a_{n+2} x^{n+2}+\cdots, \\
y^{\prime} & =a_{1}+2 a_{2} x+3 a_{3} x^{2}+4 a_{4} x^{3}+\cdots+(n+2) a_{n+2} x^{n+1}+\ldots, \\
y^{\prime \prime} & =1 \cdot 2 a_{2}+2 \cdot 3 a_{3} x+3 \cdot 4 a_{4} x^{2}+\cdots+(n+1)(n+2) a_{n+2} x^{n}+\cdots
\end{aligned}
$$

Thus
$y^{\prime \prime}+4 y=\left(1 \cdot 2 a_{2}+4 a_{0}\right)+\left(2 \cdot 3 a_{3}+4 a_{1}\right) x+\left(3 \cdot 4 a_{4}+4 a_{2}\right) x^{2}+\cdots+\left((n+1)(n+2) a_{n+2}+4 a_{n}\right) x^{n}+\cdots=0$, and hence

$$
\begin{equation*}
a_{n+2}=-\frac{4}{(n+1)(n+2)} a_{n} \tag{*}
\end{equation*}
$$

Also from the initial conditions we see that

$$
a_{0}=1 \text { and } a_{1}=0
$$

To prove that odd indexed coefficients are zero first observe that $a_{1}=0$. For induction hypothesis assume that $a_{2 n+1}=0$ for some $n \geq 0$. Now check that using the equation $(*)$,

$$
a_{2 n+3}=-\frac{4}{(2 n+2)(2 n+3)} a_{2 n+1}=0, \text { since } a_{2 n+1}=0 \text { by assumption. }
$$

This proves that all odd indexed coefficients are zero.

For the even indexed coefficients first observe that $a_{0}=1$ is of the claimed form. Now assume the claim holds for some $n \geq 0$, and again using the equation $(*)$ check that

$$
a_{2 n+2}=-\frac{4}{(2 n+1)(2 n+2)} a_{2 n}=-\frac{4}{(2 n+1)(2 n+2)}(-1)^{n} \frac{4^{n}}{(2 n)!}=(-1)^{n+1} \frac{4^{n+1}}{(2 n+2)!},
$$

which is of the required form. This completes the induction. Hence we have

$$
y(x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{4^{n}}{(2 n)!} x^{2 n}=\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{(2 n)!}(2 x)^{2 n} .
$$

We recognize this function as

$$
y(x)=\cos 2 x
$$

and hence

$$
y(\pi / 6)=\cos (\pi / 3)=\frac{1}{2}
$$

