Bilkent University

Solution Key

Q-1) Using the Squeeze Theorem, find $\lim _{(x, y, z) \rightarrow(0,0,0)} \frac{x^{3} y^{2} z^{5}}{x^{2}+y^{4}+z^{6}}$.
Q-2) Find $\lim _{(x, y, z) \rightarrow(0,0,0)} \frac{x y^{2} z^{3}}{x^{2}+y^{8}+z^{12}}$.
Q-3) Find $\lim _{(x, y, z) \rightarrow(0,0,0)} \frac{x^{3} y^{4}+x^{4} y^{3}}{\left(x^{2}+y^{2}\right)^{3}}$.
Show your work in detail. Correct answers with no justification will not get any credit.
Grading: $3+3+4=10$ points
Solution: (Grader: melis.gezer@bilkent.edu.tr)
(1) Notice that we have $0 \leq\left|\frac{x^{3} y^{2} z^{5}}{x^{2}+y^{4}+z^{6}}\right|=\frac{x^{2}}{x^{2}+y^{4}+z^{6}}\left|x y^{2} z^{5}\right| \leq\left|x y^{2} z^{5}\right|$, since the fraction $\frac{x^{2}}{x^{2}+y^{4}+z^{6}} \leq 1$. Now since $\left|x y^{2} z^{5}\right| \rightarrow 0$ as $(x, y, z) \rightarrow(0,0,0)$, we see that the limit $\lim _{(x, y, z) \rightarrow(0,0,0)} \frac{x^{3} y^{2} z^{5}}{x^{2}+y^{4}+z^{6}}=0$ by the Squeeze Theorem.
(2) Here we have $\frac{1}{2}+\frac{2}{8}+\frac{3}{12}=1$, and hence the limit does not exist by Sertöz Theorem! $)$
(3) Here put $x=r \cos \theta$ and $y=r \sin \theta$. Then we have
$\lim _{(x, y, z) \rightarrow(0,0,0)} \frac{x^{3} y^{4}+x^{4} y^{3}}{\left(x^{2}+y^{2}\right)^{3}}=\lim _{r \rightarrow 0} \frac{r^{7}\left(\cos ^{3} \theta \sin ^{4} \theta+\cos ^{4} \theta \sin ^{3} \theta\right)}{r^{6}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)}=\lim _{r \rightarrow 0} r\left(\cos ^{3} \theta \sin ^{4} \theta+\cos ^{4} \theta \sin ^{3} \theta\right)=0$
since $\left(\cos ^{3} \theta \sin ^{4} \theta+\cos ^{4} \theta \sin ^{3} \theta\right)$ is bounded, i.e. $0 \leq|r|\left|\cos ^{3} \theta \sin ^{4} \theta+\cos ^{4} \theta \sin ^{3} \theta\right| \leq 2|r|$. Hence this last limit is zero by the Squeeze Theorem.

Two alternate solutions on next page.

Let $f(x, y, z)=\frac{x y^{2} z^{3}}{x^{2}+y^{8}+z^{12}}$, and consider the path $(x, y, z)=\left(\lambda t^{12}, \lambda t^{3}, \lambda t^{2}\right)$, where $t \in \mathbb{R}$ is the free parameter and λ is a non-zero constant which is not the root of the equation $1+X^{6}+X^{10}=0$. Then moving to the origin along this path we have

$$
f\left(\lambda t^{12}, \lambda t^{3}, \lambda t^{2}\right)=\frac{\lambda^{4}}{1+\lambda^{6}+\lambda^{10}}
$$

We now see that along each such path f has a different limit. Therefore the limit does not exist by the Two Path Test.

An alternate solution for (3)
Observe that

$$
0 \leq\left|\frac{x^{3} y^{4}}{\left(x^{2}+y^{2}\right)^{3}}\right|=\frac{x^{2}}{x^{2}+y^{2}} \cdot \frac{y^{2}}{x^{2}+y^{2}} \cdot \frac{y^{2}}{x^{2}+y^{2}}|x| \leq|x|,
$$

and similarly

$$
0 \leq\left|\frac{x^{4} y^{3}}{\left(x^{2}+y^{2}\right)^{3}}\right|=\frac{x^{2}}{x^{2}+y^{2}} \cdot \frac{x^{2}}{x^{2}+y^{2}} \cdot \frac{y^{2}}{x^{2}+y^{2}}|y| \leq|y|,
$$

hence

$$
0 \leq\left|\frac{x^{3} y^{4}+x^{4} y^{3}}{\left(x^{2}+y^{2}\right)^{3}}\right| \leq\left|\frac{x^{3} y^{4}}{\left(x^{2}+y^{2}\right)^{3}}\right|+\left|\frac{x^{4} y^{3}}{\left(x^{2}+y^{2}\right)^{3}}\right| \leq|x|+|y| .
$$

Thus the limit is zero as $(x, y) \rightarrow(0,0)$ by the Squeeze Theorem.

