

Bilkent University

Quiz # 07 Math 102 Section 09 Calculus II 25 March 2024 Monday Instructor: Ali Sinan Sertöz Solution Key

Q-1) Using the Squeeze Theorem, find
$$\lim_{(x,y,z)\to(0,0,0)} \frac{x^3y^2z^5}{x^2+y^4+z^6}$$
.

Q-2) Find
$$\lim_{(x,y,z)\to(0,0,0)} \frac{xy^2z^3}{x^2+y^8+z^{12}}$$
.

Q-3) Find
$$\lim_{(x,y,z)\to(0,0,0)} \frac{x^3y^4 + x^4y^3}{(x^2 + y^2)^3}$$
.

Show your work in detail. Correct answers with no justification will not get any credit. Grading: 3+3+4=10 points

Solution: (Grader: melis.gezer@bilkent.edu.tr)

(1) Notice that we have $0 \le \left| \frac{x^3 y^2 z^5}{x^2 + y^4 + z^6} \right| = \frac{x^2}{x^2 + y^4 + z^6} |xy^2 z^5| \le |xy^2 z^5|$, since the fraction $\frac{x^2}{x^2 + y^4 + z^6} \le 1$. Now since $|xy^2 z^5| \to 0$ as $(x, y, z) \to (0, 0, 0)$, we see that the limit $\lim_{(x,y,z)\to(0,0,0)} \frac{x^3 y^2 z^5}{x^2 + y^4 + z^6} = 0$ by the Squeeze Theorem.

(2) Here we have
$$\frac{1}{2} + \frac{2}{8} + \frac{3}{12} = 1$$
, and hence the limit does not exist by Sertöz Theorem! \bigcirc

(3) Here put $x = r \cos \theta$ and $y = r \sin \theta$. Then we have

 $\lim_{(x,y,z)\to(0,0,0)} \frac{x^3y^4 + x^4y^3}{(x^2 + y^2)^3} = \lim_{r\to 0} \frac{r^7(\cos^3\theta\sin^4\theta + \cos^4\theta\sin^3\theta)}{r^6(\cos^2\theta + \sin^2\theta)} = \lim_{r\to 0} r(\cos^3\theta\sin^4\theta + \cos^4\theta\sin^3\theta) = 0$

since $(\cos^3 \theta \sin^4 \theta + \cos^4 \theta \sin^3 \theta)$ is bounded, i.e. $0 \le |r| |\cos^3 \theta \sin^4 \theta + \cos^4 \theta \sin^3 \theta| \le 2|r|$. Hence this last limit is zero by the Squeeze Theorem.

Two alternate solutions on next page.

An alternate solution for (2)

Let $f(x, y, z) = \frac{xy^2z^3}{x^2 + y^8 + z^{12}}$, and consider the path $(x, y, z) = (\lambda t^{12}, \lambda t^3, \lambda t^2)$, where $t \in \mathbb{R}$ is the free parameter and λ is a non-zero constant which is not the root of the equation $1 + X^6 + X^{10} = 0$. Then moving to the origin along this path we have

$$f(\lambda t^{12}, \ \lambda t^3, \ \lambda t^2) = \frac{\lambda^4}{1 + \lambda^6 + \lambda^{10}}.$$

We now see that along each such path f has a different limit. Therefore the limit does not exist by the Two Path Test.

An alternate solution for (3)

Observe that

$$0 \le \left| \frac{x^3 y^4}{(x^2 + y^2)^3} \right| = \frac{x^2}{x^2 + y^2} \cdot \frac{y^2}{x^2 + y^2} \cdot \frac{y^2}{x^2 + y^2} |x| \le |x|,$$

and similarly

$$0 \le \left| \frac{x^4 y^3}{(x^2 + y^2)^3} \right| = \frac{x^2}{x^2 + y^2} \cdot \frac{x^2}{x^2 + y^2} \cdot \frac{y^2}{x^2 + y^2} |y| \le |y|,$$

hence

$$0 \le \left| \frac{x^3 y^4 + x^4 y^3}{(x^2 + y^2)^3} \right| \le \left| \frac{x^3 y^4}{(x^2 + y^2)^3} \right| + \left| \frac{x^4 y^3}{(x^2 + y^2)^3} \right| \le |x| + |y|.$$

Thus the limit is zero as $(x, y) \rightarrow (0, 0)$ by the Squeeze Theorem.