Math 112 Intermediate Calculus II – Final Exam – Solutions

Q-1) Evaluate the integral $\int t\sqrt{1+t^2} \arctan \sqrt{1+t^2} dt$.

Solution: Put $x = \sqrt{1+t^2}$, then $\int t\sqrt{1+t^2} \arctan \sqrt{1+t^2} dt = \int x^2 \arctan x dx$. Using by-parts with $u = \arctan x$ and $dv = x^2 dx$ we get $\int x^2 \arctan x dx = \frac{1}{3}x^3 \arctan x - \frac{1}{3}\int \frac{x^3}{1+x^2} dx = \frac{1}{3}x^3 \arctan x - \frac{1}{3}\int \left(x - \frac{x}{1+x^2}\right) dx = \frac{1}{3}x^3 \arctan x - \frac{1}{6}x^2 + \frac{1}{6}\ln(1+x^2) + C$.

Finally putting back the original substitution gives

$$\int t\sqrt{1+t^2} \arctan \sqrt{1+t^2} \, dt = \frac{1}{3}(1+t^2)^{3/2} \arctan \sqrt{1+t^2} - \frac{1}{6}(1+t^2) + \frac{1}{6}\ln(2+t^2) + C.$$

Q-2) Find the the <u>interval</u> of convergence of the power series $\sum_{n=0}^{\infty} \frac{2^n (n!)^2}{(2n)!} (x-5)^n.$

Solution: Let $a_n = \frac{2^n (n!)^2}{(2n)!} (x-5)^n$. Using ratio test we get $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \frac{1}{2} |x-5|$. So the series converges absolutely for 3 < x < 7.

Now we check the end points. When x = 7 or x = 3, we have $|a_n| = \frac{4^n (n!)^2}{(2n)!}$.

$$\left|\frac{a_{n+1}}{a_n}\right| = \frac{4n^2 + 8n + 4}{4n^2 + 6n + 2} > 1.$$

Then $|a_{n+1}| > |a_n| > \cdots > |a_0| = 1$. So in particular $\lim_{n \to \infty} a_n \neq 0$, so the series diverges at the end points.

Hence the interval of convergence is 3 < x < 7.

Q-3) Find a parametric equation for the tangent line of the curve of intersection of the two surfaces $x^3 + y^2 - xz^3 = 6$ and $y^3 - xyz - 2x^2 = 8$ at the point (1, 2, -1).

Solution: Let $f = x^3 + y^2 - xz^3 - 6$, $g = y^3 - xyz - 2x^2 - 8$. $\nabla f = (3x^2 - z^3, 2y, -3xz^2)$, $\nabla g = (-yz - 4x, 3y^2 - xz, -xy)$. $\nabla f(1, 2, -1) = (4, 4, -3)$, $\nabla g(1, 2, -1) = (-2, 13, -2)$.

$$\nabla f(1,2,-1) \times \nabla g(1,2,-1) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 4 & 4 & -3 \\ -2 & 13 & -2 \end{vmatrix} = (31,14,60).$$

A parametric equation for the tangent line in question is $L(t) = (1, 2, -1) + (31, 14, 60)t, t \in \mathbb{R}$.

Note that this line is in the intersection of the tangent planes of the surfaces f = 0 and g = 0 at the given point, so you can write the equations of their tangent planes and that would constitute another description of this tangent line.

Q-4) Find the critical points of $f(x, y) = x^4 + 4xy + y^4$ and decide if each critical point is a local min/max or a saddle point. Find global extreme points and values of f(x, y), if they exist.

Solution: Solving $f_x = 4x^3 + 4y = 0$ and $f_y = 4x + 4y^3 = 0$ we find that the critical points are (0,0), (1,-1) and (-1,1).

To apply the second derivative test we calculate $f_{xx} = 12x^2$, $f_{yy} = 12y^2$, $f_{xy} = 4$ and $\Delta = 144x^2y^2 - 16$.

We then find that (0,0) is a saddle point, and the other two critical points are local min points.

Since f is bounded from below, it must have a minimum point and it must be at one of these local min points. Since f(-1, 1) = f(1, -1) = -2, this is the global min value for the function. f clearly is unbounded from above.

Q-5) Find the maximum value of the function f(x, y, z) = xyz subject to the conditions $x + y^2 + z^3 = 1188, x > 0, y > 0$ and z > 0.

Solution: Let $g = x + y^2 + z^3 - 1188$. We use Lagrange multipliers method.

The system $\nabla f = \lambda \nabla g$ and g = 0 is to be solved.

(1)... $yz = \lambda$ (2)... $xz = 2\lambda y$ (3)... $xy = 3\lambda z^2$ (4)... $x + y^2 + z^3 - 1188 = 0.$

(1) and (2) $\Rightarrow xz = 2y^2z$. Since z > 0, we can cancel z to obtain $y^2 = x/2$.

(1) and (3) similarly imply $z^3 = x/3$.

Putting these into (4) we get x = 648. This then gives y = 18 and z = 6.

The surface $x + y^2 + z^3 - 1188 = 0$ with $x, y, z \ge 0$ is a closed and bounded set in \mathbb{R}^3 . Since f is continuous, it must have a minimum and maximum on this surface. Since the minimum of f is clearly 0, the above critical point must give the global maximum.

Therefore the maximum value of f is $648 \cdot 18 \cdot 6 = 69984$.