Date: 23 July 2004, Friday
Instructor: Ali Sinan Sertöz
Time: 13:30-15:30

Math 112 Intermediate Calculus II - Final Exam - Solutions

Q-1) Evaluate the integral $\int t \sqrt{1+t^{2}} \arctan \sqrt{1+t^{2}} d t$.
Solution: Put $x=\sqrt{1+t^{2}}$, then $\int t \sqrt{1+t^{2}} \arctan \sqrt{1+t^{2}} d t=\int x^{2} \arctan x d x$.
Using by-parts with $u=\arctan x$ and $d v=x^{2} d x$ we get $\int x^{2} \arctan x d x=\frac{1}{3} x^{3} \arctan x-$
$\frac{1}{3} \int \frac{x^{3}}{1+x^{2}} d x=\frac{1}{3} x^{3} \arctan x-\frac{1}{3} \int\left(x-\frac{x}{1+x^{2}}\right) d x=\frac{1}{3} x^{3} \arctan x-\frac{1}{6} x^{2}+\frac{1}{6} \ln \left(1+x^{2}\right)+C$.
Finally putting back the original substitution gives
$\int t \sqrt{1+t^{2}} \arctan \sqrt{1+t^{2}} d t=\frac{1}{3}\left(1+t^{2}\right)^{3 / 2} \arctan \sqrt{1+t^{2}}-\frac{1}{6}\left(1+t^{2}\right)+\frac{1}{6} \ln \left(2+t^{2}\right)+C$.

Q-2) Find the the interval of convergence of the power series $\sum_{n=0}^{\infty} \frac{2^{n}(n!)^{2}}{(2 n)!}(x-5)^{n}$.
Solution: Let $a_{n}=\frac{2^{n}(n!)^{2}}{(2 n)!}(x-5)^{n}$. Using ratio test we get $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{1}{2}|x-5|$. So the series converges absolutely for $3<x<7$.

Now we check the end points. When $x=7$ or $x=3$, we have $\left|a_{n}\right|=\frac{4^{n}(n!)^{2}}{(2 n)!}$.
$\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{4 n^{2}+8 n+4}{4 n^{2}+6 n+2}>1$.
Then $\left|a_{n+1}\right|>\left|a_{n}\right|>\cdots>\left|a_{0}\right|=1$. So in particular $\lim _{n \rightarrow \infty} a_{n} \neq 0$, so the series diverges at the end points.

Hence the interval of convergence is $3<x<7$.

Q-3) Find a parametric equation for the tangent line of the curve of intersection of the two surfaces $x^{3}+y^{2}-x z^{3}=6$ and $y^{3}-x y z-2 x^{2}=8$ at the point $(1,2,-1)$.

Solution: Let $f=x^{3}+y^{2}-x z^{3}-6, g=y^{3}-x y z-2 x^{2}-8$.
$\nabla f=\left(3 x^{2}-z^{3}, 2 y,-3 x z^{2}\right), \nabla g=\left(-y z-4 x, 3 y^{2}-x z,-x y\right)$.
$\nabla f(1,2,-1)=(4,4,-3), \nabla g(1,2,-1)=(-2,13,-2)$.
$\nabla f(1,2,-1) \times \nabla g(1,2,-1)=\left|\begin{array}{rrr}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 4 & 4 & -3 \\ -2 & 13 & -2\end{array}\right|=(31,14,60)$.
A parametric equation for the tangent line in question is $L(t)=(1,2,-1)+(31,14,60) t, t \in \mathbb{R}$.
Note that this line is in the intersection of the tangent planes of the surfaces $f=0$ and $g=0$ at the given point, so you can write the equations of their tangent planes and that would constitute another description of this tangent line.

Q-4) Find the critical points of $f(x, y)=x^{4}+4 x y+y^{4}$ and decide if each critical point is a local $\mathrm{min} / \mathrm{max}$ or a saddle point. Find global extreme points and values of $f(x, y)$, if they exist.

Solution: Solving $f_{x}=4 x^{3}+4 y=0$ and $f_{y}=4 x+4 y^{3}=0$ we find that the critical points are $(0,0),(1,-1)$ and $(-1,1)$.

To apply the second derivative test we calculate $f_{x x}=12 x^{2}, f_{y y}=12 y^{2}, f_{x y}=4$ and $\Delta=$ $144 x^{2} y^{2}-16$.

We then find that $(0,0)$ is a saddle point, and the other two critical points are local min points.
Since f is bounded from below, it must have a minimum point and it must be at one of these local min points. Since $f(-1,1)=f(1,-1)=-2$, this is the global min value for the function. f clearly is unbounded from above.

Q-5) Find the maximum value of the function $f(x, y, z)=x y z$ subject to the conditions $x+y^{2}+z^{3}=1188, x>0, y>0$ and $z>0$.

Solution: Let $g=x+y^{2}+z^{3}-1188$. We use Lagrange multipliers method.
The system $\nabla f=\lambda \nabla g$ and $g=0$ is to be solved.
(1)... $y z=\lambda$
(2) $\ldots x z=2 \lambda y$
(3) $\ldots x y=3 \lambda z^{2}$
(4) $\ldots x+y^{2}+z^{3}-1188=0$.
(1) and $(2) \Rightarrow x z=2 y^{2} z$. Since $z>0$, we can cancel z to obtain $y^{2}=x / 2$.
(1) and (3) similarly imply $z^{3}=x / 3$.

Putting these into (4) we get $x=648$. This then gives $y=18$ and $z=6$.
The surface $x+y^{2}+z^{3}-1188=0$ with $x, y, z \geq 0$ is a closed and bounded set in \mathbb{R}^{3}. Since f is continuous, it must have a minimum and maximum on this surface. Since the minimum of f is clearly 0 , the above critical point must give the global maximum.

Therefore the maximum value of f is $648 \cdot 18 \cdot 6=69984$.

