Math 112 Intermediate Calculus II - Midterm Exam II - Solutions

Q-1) i) Find $\lim _{x \rightarrow 0}[\ln (1+x)]^{\ln (1+x)}$.
ii) Find $\lim _{n \rightarrow \infty} \frac{n!}{n^{n}}$.

Solution-i: If $L=\lim _{x \rightarrow 0}[\ln (1+x)]^{\ln (1+x)}$, then $\ln L=\lim _{x \rightarrow 0} \ln (1+x) \cdot \ln \ln (1+x)=$ $\lim _{x \rightarrow 0} \frac{\ln (\ln (1+x))}{\frac{1}{\ln (1+x)}}=\lim _{x \rightarrow 0} \ln (1+x)=0$ after applying L'Hopital's rule. Hence $L=1$.

Solution-ii: $\quad 0<\frac{n!}{n^{n}}=\frac{1}{n} \frac{2 \cdot 3 \cdot 4 \cdot \cdots n}{n \cdot n \cdot n \cdots n}<\frac{1}{n}$. Then by the sandwich theorem $\lim _{n \rightarrow \infty} \frac{n!}{n^{n}}=0$

Q-2) Find the sum $\sum_{n=1}^{\infty} \frac{5 n+6}{n^{3}+3 n^{2}+2 n}$.

Solution:

By the partial fractions method we find that $\frac{5 n+6}{n^{3}+3 n^{2}+2 n}=\frac{3}{n}-\frac{1}{n+1}-\frac{2}{n+2}$. Adding the series telescopingly we find that the partial sums are of the form $S_{n}=4-\frac{3}{n+1}-\frac{2}{n+2}$. Hence the sum is $\lim _{n \rightarrow \infty} S_{n}=4$.

Q-3) Are these series conditionally convergent, absolutely convergent or divergent?
i) $\sum_{n=1}^{\infty}(-1)^{n} \ln \left(1+\frac{1}{n}\right)$.
ii) $\sum_{n=1}^{\infty}(-1)^{n} \frac{(2 n)!}{(n!)^{2} 5^{n}}$.

Solution-i: Since $\ln \left(1+\frac{1}{n}\right)$ decreases to zero, this series converges by the alternating series test. However, limit-comparing with the harmonic series implies that the series of absolute values diverges. Hence this series conditionally converges.

Solution-ii: Using the ratio test we see that this series converges absolutely.

Q-4) Find the interval of convergence, i.e. check also the end points, for the power series $\sum_{n=1}^{\infty} n^{1 / n} x^{n}$.

Solution:

Letting $a_{n}=n^{1 / n}|x|^{n}$, and applying the n-th root test we see that $\lim _{n \rightarrow \infty}\left(a_{n}\right)^{1 / n}=|x|$, so the series absolutely converges for all $|x|<1$. When $x= \pm 1$, the absolute value of the general term is $n^{1 / n}$ which converges to 1 as n goes to infinity. Hence the series diverges at the end point by the divergence test.

Q-5) Find $\lim _{x \rightarrow 0} \frac{\left(\ln \frac{1+x}{1-x}\right)-2 x}{\left(1-e^{x}\right)(x \sin x)}$.

Solution:

$\left(\ln \frac{1+x}{1-x}\right)-2 x=\ln (1+x)-\ln (1-x)-2 x$
$=\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\cdots\right)-\left(x+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\cdots\right)-2 x=\frac{2}{3} x^{3}+\frac{2}{5} x^{5}+\cdots$.
$\left(1-e^{x}\right)(x \sin x)=\left(-x-\frac{x^{2}}{2!}-\frac{x^{3}}{3!}-\cdots\right)\left(x^{2}-\frac{x^{4}}{3!}+\frac{x^{6}}{5!}-\cdots\right)=-x^{3}-\frac{x^{4}}{2!}+\cdots$.
Then $\lim _{x \rightarrow 0} \frac{\left(\ln \frac{1+x}{1-x}\right)-2 x}{\left(1-e^{x}\right)(x \sin x)}=\lim _{x \rightarrow 0} \frac{\frac{2}{3} x^{3}+\frac{2}{5} x^{5}+\cdots}{-x^{3}-\frac{x^{4}}{2!}+\cdots}=-\frac{2}{3}$.

