Date: 21 July 2004, Wednesday
Instructor: Ali Sinan Sertöz
Time: 16:40-17:40
\qquad
STUDENT NO: \qquad

Math 112 Intermediate Calculus II - QUIZ - Solutions

Q-1) Calculate the following limits, if they exist:
a) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3}+y^{3}}{x^{2}+y^{2}}$.
b) $\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{3}}{x^{4}+y^{4}}$.

Solution:

a) $\left|\frac{x^{3}+y^{3}}{x^{2}+y^{2}}\right| \leq \frac{|x| x^{2}+|y| y^{2}}{x^{2}+y^{2}} \leq \frac{|x|\left(x^{2}+y^{2}\right)+|y|\left(y^{2}+x^{2}\right)}{x^{2}+y^{2}}=|x|+|y|$. Hence the required limit is zero by the sandwich theorem.
a) Approaching the origin along the lines $y=\lambda x$, we see that the limit depends on λ, so no unique limit exists.

Q-2) Find the directional derivative of $f(x, y, z)=2 x^{3} y+y z+x z^{2}$ at the point $p_{0}=(1,2,4)$ in the direction of the vector $\vec{v}=(3,4,12)$.

Solution:

$\nabla f\left(p_{0}\right)=(28,6,10), \vec{u}=\frac{\vec{v}}{|\vec{v}|}=\left(\frac{3}{13}, \frac{4}{13}, \frac{12}{13}\right)$.
$D_{\vec{u}} f\left(p_{0}\right)=\nabla f\left(p_{0}\right) \cdot \vec{u}=\frac{228}{13}$.

Q-3) Find the critical points of $f(x, y)=x^{2} y-x^{3}-x y^{2}+x+1$ and decide if each critical point is a local min/max or a saddle point. Find global min/max points, if they exist.

Solution:

From $f_{y}=x^{2}-2 x y=0$ we find that $x=0$ or $x=2 y$. Putting $x=0$ into $f_{x}=2 x y-3 x^{2}-$ $y^{2}+1=0$, we get $y= \pm 1$, giving us the critical points $(0,1)$ and $(0,-1)$.

Putting $x=2 y$ into $f_{x}=2 x y-3 x^{2}-y^{2}+1=0$, we get $y= \pm 1 / 3$, giving us the critical points $(2 / 3,1 / 3)$ and $(-2 / 3,-1 / 3)$.

Applying the second derivative test we find that $(0,1)$ and $(0,-1)$ are saddle points, the point $(2 / 3,1 / 3)$ is a local max point, and the point $(-2 / 3,-1 / 3)$ is a local min point.

From $f(x, 0)=-x^{3}+x+1$ we see that f is unbounded both from below and above, so there is no global min or max.

Q-4) Maximize the function $f(x, y)=x y$ subject to the condition $\frac{x^{2}}{12}+\frac{y^{2}}{3}=2$.

Solution:

Letting $g(x, y)=\frac{x^{2}}{12}+\frac{y^{2}}{3}-2$, we solve simultaneously $\nabla f=\lambda \nabla g$ and $g=0$, i.e. we solve
(1) $\ldots . . x=\frac{2 \lambda y}{3}$.
(2) $\ldots . . y=\frac{2 \lambda x}{12}$.
(3)..... $\frac{x^{2}}{12}+\frac{y^{2}}{3}=2$.

First we see from both (1) and (2) that if $x=0$, then $y=0$, but this does not satisfy (3). So from (1) we solve for λ, substitute into (2) to obtain $\frac{x^{2}}{12}=\frac{y^{2}}{3}$. Putting this into (3) we get $x^{2}=12$, which gives $y^{2}=3$. Then at these critical points $x y= \pm 6$.

Since the function f clearly has a min and max (it is a continuous function on a closed and bounded set in \mathbb{R}^{2}), we conclude that $\min f$ is -6 , and max of f is 6 .

