Exercise 3.20-5, page 155 Apostol: If n is a positive integer, use Theorem 3.16 to show that

$$\int_{\sqrt{n\pi}}^{\sqrt{(n+1)\pi}} \sin(t^2) \, dt = \frac{(-1)^n}{c}, \quad \text{where} \quad \sqrt{n\pi} \le c \le \sqrt{(n+1)\pi}.$$

Lemma Let $f : [a^2, b^2] \longrightarrow \mathbb{R}$ be an integrable, non-negative, function, where $0 \le a < b$. Furthermore assume that $tf(t^2)$ is monotonic on [a, b]. Then

$$\int_{a}^{b} t f(t^{2}) dt = \frac{1}{2} \int_{a^{2}}^{b^{2}} f(x) dx.$$

Proof: Let $P = \{x_0, \ldots, x_r\}$ be a partition of $[a^2, b^2]$. Then $P' = \{\sqrt{x_0}, \ldots, \sqrt{x_r}\}$ is a partition of [a, b].

Let $m_k = \min_{x_{k-1} \le x \le x_k} f(x)$ and $M_k = \max_{x_{k-1} \le x \le x_k} f(x)$.

Let L'_r , U'_r be the lower and upper Riemann sums respectively for $tf(t^2)$ with respect to the partition P'. Similarly define L_r , U_r as the lower and upper sums for f(x) with respect to the partition P. Since these functions are integrable on their respective domains we have

$$\lim_{r \to \infty} L'_r = \lim_{r \to \infty} U'_r = \int_a^b t f(t^2) dt,$$
$$\lim_{r \to \infty} L_r = \lim_{r \to \infty} U_r = \int_{a^2}^{b^2} f(x) dx.$$

Note before we proceed that the Geometric-Arithmetic Mean theorem,

$$\sqrt{uv} \le \frac{1}{2}(u+v),$$

implies that for any $k = 1, \ldots, r$,

$$\sqrt{x_k x_{k-1}} - x_{k-1} \le \frac{1}{2} (x_k - x_{k-1}),$$
$$x_k - \sqrt{x_k x_{k-1}} \ge \frac{1}{2} (x_k - x_{k-1}).$$

Assume $tf(t^2)$ is increasing. Then we have

$$L'_{r} = \sum_{k=1}^{r} \sqrt{x_{k-1}} f(x_{k-1}) \left(\sqrt{x_{k}} - \sqrt{x_{k-1}}\right)$$
$$= \sum_{k=1}^{r} f(x_{k-1}) \left(\sqrt{x_{k}x_{k-1}} - x_{k-1}\right)$$
$$\leq \frac{1}{2} \sum_{k=1}^{r} f(x_{k-1}) \left(x_{k} - x_{k-1}\right)$$
$$\leq \frac{1}{2} \sum_{k=1}^{r} M_{k} \left(x_{k} - x_{k-1}\right)$$
$$= U_{r}.$$

Similarly we have

$$U'_{r} = \sum_{k=1}^{r} \sqrt{x_{k}} f(x_{k}) \left(\sqrt{x_{k}} - \sqrt{x_{k-1}}\right)$$

$$= \sum_{k=1}^{r} f(x_{k}) \left(x_{k} - \sqrt{x_{k}x_{k-1}}\right)$$

$$\geq \frac{1}{2} \sum_{k=1}^{r} f(x_{k}) \left(x_{k} - x_{k-1}\right)$$

$$\geq \frac{1}{2} \sum_{k=1}^{r} m_{k} \left(x_{k} - x_{k-1}\right)$$

$$= L_{r}.$$

We thus established the inequalities

$$L'_r \leq U_r, \quad U'_r \geq L_r.$$

Taking the limits of all sides as $r \to \infty$ we get

$$\int_{a}^{b} t f(t^{2}) dt \leq \frac{1}{2} \int_{a^{2}}^{b^{2}} f(x) dx, \quad \int_{a}^{b} t f(t^{2}) dt \geq \frac{1}{2} \int_{a^{2}}^{b^{2}} f(x) dx,$$

which establish the required equality.

If $tf(t^2)$ is decreasing, a similar argument gives the inequalities

$$L'_r \ge L_r, \quad U'_r \le U_r,$$

which again imply the claim of the lemma.

Remark: If f is non-positive, then the result of the lemma holds for the non-negative function g = -f, and cancelling signs we have the result for f.

Remark: If a < 0, then a careful chase of signs gives a proof of the lemma along similar lines, so the condition on the signs of a and b can be dropped.

Theorem Let $f : [a^2, b^2] \longrightarrow \mathbb{R}$ be an integrable function. Assume that there is a finite set of points $a = x_0 < x_1 < \cdots < x_r = b$ such that $tf(t^2)$ is nonzero and monotonic on each (x_{k-1}, x_k) . Then

$$\int_{a}^{b} t f(t^{2}) dt = \frac{1}{2} \int_{a^{2}}^{b^{2}} f(x) dx.$$

Remark: If f is continuous and changes its trend, up or down, finitely may times on the interval $[a^2, b^2]$, then $tf(t^2)$ satisfies the conditions of the theorem.

Example 1:

$$\int_{\sqrt{n\pi}}^{\sqrt{(n+1)\pi}} t\sin t^2 \, dt = \frac{1}{2} \int_{n\pi}^{(n+1)\pi} \sin x \, dx = (-1)^n.$$

Example 2:

$$\int_{\sqrt{n\pi}}^{\sqrt{(n+1)\pi}} \sin t^2 dt = \int_{\sqrt{n\pi}}^{\sqrt{(n+1)\pi}} \frac{t \sin t^2}{t} dt$$
$$= \frac{1}{c} \int_{\sqrt{n\pi}}^{\sqrt{(n+1)\pi}} t \sin t^2 dt \quad \text{(Theorem3.16)}$$
$$= \frac{(-1)^n}{c}, \quad \text{(Example - 1)}$$

for some c satisfying $\sqrt{n\pi} \le c \le \sqrt{(n+1)\pi}$. And this solves Exercise 3.19-5 on page 155 of Apostol's Calculus.

Comments to: sertoz@bilkent.edu.tr