Exercise 3.20-5, page 155 Apostol: If n is a positive integer, use Theorem 3.16 to show that

$$
\int_{\sqrt{n \pi}}^{\sqrt{(n+1) \pi}} \sin \left(t^{2}\right) d t=\frac{(-1)^{n}}{c}, \quad \text { where } \quad \sqrt{n \pi} \leq c \leq \sqrt{(n+1) \pi}
$$

Lemma Let $f:\left[a^{2}, b^{2}\right] \longrightarrow \mathbb{R}$ be an integrable, non-negative, function, where $0 \leq a<b$. Furthermore assume that $t f\left(t^{2}\right)$ is monotonic on $[a, b]$. Then

$$
\int_{a}^{b} t f\left(t^{2}\right) d t=\frac{1}{2} \int_{a^{2}}^{b^{2}} f(x) d x
$$

Proof: Let $P=\left\{x_{0}, \ldots, x_{r}\right\}$ be a partition of $\left[a^{2}, b^{2}\right]$. Then $P^{\prime}=\left\{\sqrt{x_{0}}, \ldots, \sqrt{x_{r}}\right\}$ is a partition of $[a, b]$.

Let $m_{k}=\min _{x_{k-1} \leq x \leq x_{k}} f(x)$ and $M_{k}=\max _{x_{k-1} \leq x \leq x_{k}} f(x)$.
Let $L_{r}^{\prime}, U_{r}^{\prime}$ be the lower and upper Riemann sums respectively for $t f\left(t^{2}\right)$ with respect to the partition P^{\prime}. Similarly define L_{r}, U_{r} as the lower and upper sums for $f(x)$ with respect to the partition P. Since these functions are integrable on their respective domains we have

$$
\begin{aligned}
& \lim _{r \rightarrow \infty} L_{r}^{\prime}=\lim _{r \rightarrow \infty} U_{r}^{\prime}=\int_{a}^{b} t f\left(t^{2}\right) d t \\
& \lim _{r \rightarrow \infty} L_{r}=\lim _{r \rightarrow \infty} U_{r}=\int_{a^{2}}^{b^{2}} f(x) d x
\end{aligned}
$$

Note before we proceed that the Geometric-Arithmetic Mean theorem,

$$
\sqrt{u v} \leq \frac{1}{2}(u+v)
$$

implies that for any $k=1, \ldots, r$,

$$
\begin{aligned}
\sqrt{x_{k} x_{k-1}}-x_{k-1} & \leq \frac{1}{2}\left(x_{k}-x_{k-1}\right) \\
x_{k}-\sqrt{x_{k} x_{k-1}} & \geq \frac{1}{2}\left(x_{k}-x_{k-1}\right)
\end{aligned}
$$

Assume $t f\left(t^{2}\right)$ is increasing. Then we have

$$
\begin{aligned}
L_{r}^{\prime} & =\sum_{k=1}^{r} \sqrt{x_{k-1}} f\left(x_{k-1}\right)\left(\sqrt{x_{k}}-\sqrt{x_{k-1}}\right) \\
& =\sum_{k=1}^{r} f\left(x_{k-1}\right)\left(\sqrt{x_{k} x_{k-1}}-x_{k-1}\right) \\
& \leq \frac{1}{2} \sum_{k=1}^{r} f\left(x_{k-1}\right)\left(x_{k}-x_{k-1}\right) \\
& \leq \frac{1}{2} \sum_{k=1}^{r} M_{k}\left(x_{k}-x_{k-1}\right) \\
& =U_{r}
\end{aligned}
$$

Similarly we have

$$
\begin{aligned}
U_{r}^{\prime} & =\sum_{k=1}^{r} \sqrt{x_{k}} f\left(x_{k}\right)\left(\sqrt{x_{k}}-\sqrt{x_{k-1}}\right) \\
& =\sum_{k=1}^{r} f\left(x_{k}\right)\left(x_{k}-\sqrt{x_{k} x_{k-1}}\right) \\
& \geq \frac{1}{2} \sum_{k=1}^{r} f\left(x_{k}\right)\left(x_{k}-x_{k-1}\right) \\
& \geq \frac{1}{2} \sum_{k=1}^{r} m_{k}\left(x_{k}-x_{k-1}\right) \\
& =L_{r} .
\end{aligned}
$$

We thus established the inequalities

$$
L_{r}^{\prime} \leq U_{r}, \quad U_{r}^{\prime} \geq L_{r}
$$

Taking the limits of all sides as $r \rightarrow \infty$ we get

$$
\int_{a}^{b} t f\left(t^{2}\right) d t \leq \frac{1}{2} \int_{a^{2}}^{b^{2}} f(x) d x, \quad \int_{a}^{b} t f\left(t^{2}\right) d t \geq \frac{1}{2} \int_{a^{2}}^{b^{2}} f(x) d x
$$

which establish the required equality.
If $t f\left(t^{2}\right)$ is decreasing, a similar argument gives the inequalities

$$
L_{r}^{\prime} \geq L_{r}, \quad U_{r}^{\prime} \leq U_{r}
$$

which again imply the claim of the lemma.

Remark: If f is non-positive, then the result of the lemma holds for the non-negative function $g=-f$, and cancelling signs we have the result for f.

Remark: If $a<0$, then a careful chase of signs gives a proof of the lemma along similar lines, so the condition on the signs of a and b can be dropped.

Theorem Let $f:\left[a^{2}, b^{2}\right] \longrightarrow \mathbb{R}$ be an integrable function. Assume that there is a finite set of points $a=x_{0}<x_{1}<\cdots<x_{r}=b$ such that $t f\left(t^{2}\right)$ is nonzero and monotonic on each $\left(x_{k-1}, x_{k}\right)$. Then

$$
\int_{a}^{b} t f\left(t^{2}\right) d t=\frac{1}{2} \int_{a^{2}}^{b^{2}} f(x) d x
$$

Remark: If f is continuous and changes its trend, up or down, finitely may times on the interval $\left[a^{2}, b^{2}\right]$, then $t f\left(t^{2}\right)$ satisfies the conditions of the theorem.

Example 1:

$$
\int_{\sqrt{n \pi}}^{\sqrt{(n+1) \pi}} t \sin t^{2} d t=\frac{1}{2} \int_{n \pi}^{(n+1) \pi} \sin x d x=(-1)^{n}
$$

Example 2:

$$
\begin{aligned}
\int_{\sqrt{n \pi}}^{\sqrt{(n+1) \pi}} \sin t^{2} d t & =\int_{\sqrt{n \pi}}^{\sqrt{(n+1) \pi}} \frac{t \sin t^{2}}{t} d t \\
& =\frac{1}{c} \int_{\sqrt{n \pi}}^{\sqrt{(n+1) \pi}} t \sin t^{2} d t \quad(\text { Theorem3.16) } \\
& =\frac{(-1)^{n}}{c}, \quad(\text { Example }-1)
\end{aligned}
$$

for some c satisfying $\sqrt{n \pi} \leq c \leq \sqrt{(n+1) \pi}$. And this solves Exercise 3.19-5 on page 155 of Apostol's Calculus.

Comments to: sertoz@bilkent.edu.tr

