
Exercise 3.20-5, page 155 Apostol: If n is a positive integer, use Theorem 3.16 to show
that

∫ √
(n+1)π

√
nπ

sin(t2) dt =
(−1)n

c
, where

√
nπ ≤ c ≤

√
(n + 1)π.

Lemma Let f : [a2, b2] −→ R be an integrable, non-negative, function, where 0 ≤ a < b.
Furthermore assume that tf(t2) is monotonic on [a, b]. Then

∫ b

a

t f(t2) dt =
1

2

∫ b2

a2

f(x) dx.

Proof: Let P = {x0, . . . , xr} be a partition of [a2, b2]. Then P ′ = {√x0, . . . ,
√

xr} is a
partition of [a, b].

Let mk = min
xk−1≤x≤xk

f(x) and Mk = max
xk−1≤x≤xk

f(x).

Let L′r, U ′
r be the lower and upper Riemann sums respectively for tf(t2) with respect to the

partition P ′. Similarly define Lr, Ur as the lower and upper sums for f(x) with respect to
the partition P . Since these functions are integrable on their respective domains we have

lim
r→∞

L′r = lim
r→∞

U ′
r =

∫ b

a

t f(t2) dt,

lim
r→∞

Lr = lim
r→∞

Ur =

∫ b2

a2

f(x) dx.

Note before we proceed that the Geometric-Arithmetic Mean theorem,

√
uv ≤ 1

2
(u + v),

implies that for any k = 1, . . . , r,

√
xkxk−1 − xk−1 ≤ 1

2
(xk − xk−1),

xk −√xkxk−1 ≥ 1

2
(xk − xk−1).

Assume tf(t2) is increasing. Then we have

L′r =
r∑

k=1

√
xk−1f(xk−1) (

√
xk −√xk−1)

=
r∑

k=1

f(xk−1) (
√

xkxk−1 − xk−1)

≤ 1

2

r∑

k=1

f(xk−1) (xk − xk−1)

≤ 1

2

r∑

k=1

Mk (xk − xk−1)

= Ur.
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Similarly we have

U ′
r =

r∑

k=1

√
xkf(xk) (

√
xk −√xk−1)

=
r∑

k=1

f(xk) (xk −√xkxk−1)

≥ 1

2

r∑

k=1

f(xk) (xk − xk−1)

≥ 1

2

r∑

k=1

mk (xk − xk−1)

= Lr.

We thus established the inequalities

L′r ≤ Ur, U ′
r ≥ Lr.

Taking the limits of all sides as r →∞ we get
∫ b

a

t f(t2) dt ≤ 1

2

∫ b2

a2

f(x) dx,

∫ b

a

t f(t2) dt ≥ 1

2

∫ b2

a2

f(x) dx,

which establish the required equality.

If tf(t2) is decreasing, a similar argument gives the inequalities

L′r ≥ Lr, U ′
r ≤ Ur,

which again imply the claim of the lemma.
¤

Remark: If f is non-positive, then the result of the lemma holds for the non-negative
function g = −f , and cancelling signs we have the result for f .

Remark: If a < 0, then a careful chase of signs gives a proof of the lemma along similar
lines, so the condition on the signs of a and b can be dropped.

Theorem Let f : [a2, b2] −→ R be an integrable function. Assume that there is a finite
set of points a = x0 < x1 < · · · < xr = b such that tf(t2) is nonzero and monotonic on each
(xk−1, xk). Then

∫ b

a

t f(t2) dt =
1

2

∫ b2

a2

f(x) dx.

¤
Remark: If f is continuous and changes its trend, up or down, finitely may times on the
interval [a2, b2], then tf(t2) satisfies the conditions of the theorem.

Example 1:

∫ √
(n+1)π

√
nπ

t sin t2 dt =
1

2

∫ (n+1)π

nπ

sin x dx = (−1)n.
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Example 2:

∫ √
(n+1)π

√
nπ

sin t2 dt =

∫ √
(n+1)π

√
nπ

t sin t2

t
dt

=
1

c

∫ √
(n+1)π

√
nπ

t sin t2 dt (Theorem3.16)

=
(−1)n

c
, (Example− 1)

for some c satisfying
√

nπ ≤ c ≤
√

(n + 1)π. And this solves Exercise 3.19-5 on page 155 of
Apostol’s Calculus.

Comments to: sertoz@bilkent.edu.tr
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