MATH 113 HOMEWORK 1

Turn in by Oct. 13, 2003 Monday.

1. Show by induction that $133 \mid 11^{n+2}+12^{2 n+1}$ for all integers $n \geq 0$.
2. Definition. If a and b are two unequal positive integers we define $\max (a, b)$ to be the larger of a and b. If $a=b$, we set $\max (a, b)=a=b$ (Thus $\max (3,5)=\max (5,3)=5$, and $\max (4,4)=4)$.

Let A_{n} be the following statement: If a and b are any two positive integers such that $\max (a, b)=n$, then $a=b$.

Consider the following:
Theorem. A_{n} is true for every integer $n \geq 1$.
Proof. a) Show A_{1} is true. Let a and b be two positive integers such that $\max (a, b)=1$. Then $a \leq 1$ and $b \leq 1$. Since they are also positive integers we must have $a=b=1$.
b) Assume that the statement is true for some positive integer $k \geq 1$, and prove it for $k+1$. Let a and b be any two positive integers such that $\max (a, b)=k+1$. Let $\alpha=a-1, \beta=b-1$. Then $\max (\alpha, \beta)=k$. Since the statement A_{k} is true, we have that $\alpha=\beta$, so $a=b$.
Corollary. $3=5$.
Proof. $\max (3,5)=5$. Since A_{5} is true, we have that $3=5$.
Question. What is the fallacy in the above proof?
3. Show that for all integers $n \geq 3$,

$$
1^{3}+3^{3}+5^{3}+\cdots+(2 n+1)^{3}=18 n^{3}+4 n^{2}-8 n-2 .
$$

