MATH 113 HOMEWORK 1

Turn in by Oct. 13, 2003 Monday.

1. Show by induction that $133 \mid 11^{n+2} + 12^{2n+1}$ for all integers $n \ge 0$.

2. Definition. If a and b are two unequal positive integers we define $\max(a, b)$ to be the larger of a and b. If a = b, we set $\max(a, b) = a = b$ (Thus $\max(3, 5) = \max(5, 3) = 5$, and $\max(4, 4) = 4$).

Let A_n be the following statement: If a and b are any two positive integers such that $\max(a, b) = n$, then a = b.

Consider the following:

Theorem. A_n is true for every integer $n \ge 1$.

Proof. a) Show A_1 is true. Let a and b be two positive integers such that $\max(a, b) = 1$. Then $a \leq 1$ and $b \leq 1$. Since they are also positive integers we must have a = b = 1. b) Assume that the statement is true for some positive integer $k \geq 1$, and prove it for k + 1. Let a and b be any two positive integers such that $\max(a, b) = k + 1$. Let $\alpha = a - 1$, $\beta = b - 1$. Then $\max(\alpha, \beta) = k$. Since the statement A_k is true, we have that $\alpha = \beta$, so a = b. **Corollary.** 3 = 5.

Proof. $\max(3,5) = 5$. Since A_5 is true, we have that 3 = 5.

Question. What is the fallacy in the above proof?

3. Show that for all integers $n \ge 3$,

$$1^{3} + 3^{3} + 5^{3} + \dots + (2n+1)^{3} = 18n^{3} + 4n^{2} - 8n - 2.$$