MATH 113 Homework VI

Turn in by December 29, 2003 Monday 12:30.

1. Page 278 Exercise 1. Draw graphs of the Taylor polynomials $T_{3}(\sin x)=x-x^{3} / 3$! and $T_{5}(\sin x)=x-x^{3} / 3!+x^{5} / 5$!. Pay careful attention to the points where the curves cross the x-axis. Compare these graphs with that of $f(x)=\sin x$.
2. Page 278 Exercise 9 . Let α be a real constant. Show that

$$
T_{n}\left((1+x)^{\alpha} ; 0\right)=\sum_{k=0}^{n}\binom{\alpha}{k} x^{k}, \text { where }\binom{\alpha}{k}=\left\{\begin{array}{cl}
\frac{\alpha(\alpha-1) \cdots(\alpha-k+1)}{k!} & \text { if } k \geq 1 \\
1 & \text { if } k=0
\end{array}\right.
$$

3. a) Find $T_{9}(\tan x ; 0)$,
b) $T_{n}\left(\sin x ; \frac{\pi}{3}\right)$.
