MATH 113 Solutions for Quiz 4

3 December 2003 Wednesday

Question-1: f is a function with f^{\prime} continuous and with $f(1)=1, f(2)=3, f(4)=6$, $f(14)=17$. Evaluate $\int_{1}^{2}\left(x^{2}+1\right) f^{\prime}\left(x^{3}+3 x\right) d x$.

Solution:

$$
\begin{aligned}
\int_{1}^{2}\left(x^{2}+1\right) f^{\prime}\left(x^{3}+3 x\right) d x & =\frac{1}{3} \int_{4}^{14} f^{\prime}(u) d u \quad \text { where } u=x^{3}+3 x \\
& =\left.\frac{1}{3} f(u)\right|_{4} ^{14} \quad \text { Fundamental Theorem of Calculus } \\
& =\frac{11}{3}
\end{aligned}
$$

Question-2: Evaluate $\int x \sin x d x$.

Solution:

Using integration by parts with $d u=x$ and $d v=\sin x d x$ we get

$$
\int x \sin x d x=-x \cos x+\int \cos x d x=-x \cos x+\sin x+C .
$$

