MATH 113 HOMEWORK 2 SOLUTION MANUAL

1) Find a formula for each of the following expressions and prove your formula using induction.
i) $1^{2}+2^{2}+\cdots+n^{2}$.

Solution. We have $(k+1)^{3}-k^{3}=3 k^{2}+3 k+1$. Writing this for $k=1,2,3 \cdots, n$ and

$$
\begin{aligned}
2^{3}-1^{3}= & 3 \cdot 1^{2}+3 \cdot 1+1 \\
3^{3}-2^{3}= & 3 \cdot 2^{2}+3 \cdot 2+1 \\
4^{3}-3^{3}= & 3 \cdot 3^{2}+3 \cdot 3+1 \\
\cdots & \cdots \\
(n+1)^{3}-n^{3}= & 3 \cdot n^{2}+3 \cdot n+1
\end{aligned}
$$

and adding we get

$$
(n+1)^{3}-1=3 \sum_{k=1}^{n} k^{2}+3 \sum_{k=1}^{n}+n
$$

and solving this for $\sum_{k=1}^{n} k^{2}$ we obtain

$$
\begin{equation*}
\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6} \tag{*}
\end{equation*}
$$

Now we prove this by induction for all integers $n \geq 1$.
For $n=1$, both sides are equal to 1 . Assume the formula is true for some integer $n \geq 1$, i.e. assume that $1^{2}+2^{2}+\cdots n^{2}=\frac{n(n+1)(2 n+1)}{6}$. Add $(n+1)^{2}$ to both sides. We get

$$
\begin{aligned}
1^{2}+2^{2}+\cdots+n^{2}+(n+1)^{2} & =\frac{n(n+1)(2 n+1)}{6}+(n+1)^{2} \\
& =\frac{n(n+1)(2 n+1)+6(n+1)^{2}}{6} \\
& =\frac{(n+1)[n(2 n+1)+6(n+1)]}{6} \\
& =\frac{(n+1)\left(2 n^{2}+7 n+6\right)}{6} \\
& =\frac{(n+1)(n+2)(2 n+3)}{6} \\
& =\frac{(n+1)[(n+1)+1][2(n+1)+1]}{6}
\end{aligned}
$$

So the formula is true for $n+1$. Thus by induction the formula $\left({ }^{*}\right)$ is true for all integers $n \geq 1$.
ii) $1^{2}-2^{2}+3^{2}-4^{2}+\cdots+(-1)^{n-1} n^{2}$.

Solution. Let $f(n)=1-2^{2}+3^{2}-\cdots+(-1)^{n-1} n^{2}$. We try a few values of n. We see that

$$
f(1)=1, f(2)=-3, f(3)=6, f(4)=-10, f(5)=15,
$$

and these are numerically same as

$$
1,1+2=3,1+2+3=6,1+2+3+4=10,1+2+3+4+5=15
$$

but signs alternate. So we guess that

$$
f(n)=1^{2}-2^{2}+3^{2}-\cdots+(-1)^{n-1} n^{2}=(-1)^{n-1} \frac{n(n+1)}{2} \text { for all } n \geq 1 \quad(* *)
$$

Now we prove $\left({ }^{* *}\right)$ by induction.
For $n=1, f(1)=1$ and $(-1)^{n-1} \frac{n(n+1)}{2}=1$, so the formula is true for $n=1$. Now assume $\left({ }^{* *}\right)$ is true for some integer $n \geq 1$, i.e. assume

$$
f(n)=1^{2}-2^{2}+\cdots+(-1)^{n-1} n^{2}=(-1)^{n-1} \frac{n(n+1)}{2} .
$$

Add $(-1)^{n}(n+1)^{2}$ to both sides

$$
\begin{aligned}
f(n+1)=1^{2}-2^{2}+\cdots+(-1)^{n-1} n^{2}+(-1)^{n}(n+1)^{2} & =(-1)^{n-1} \frac{n(n+1)}{2}+(-1)^{n}(n+1)^{2} \\
& =(-1)^{n-1}(n+1)\left(\frac{n}{2}-(n+1)\right) \\
& =(-1)^{n-1}(n+1) \frac{-n-2}{2} \\
& =(-1)^{n} \frac{(n+1)(n+2)}{2} .
\end{aligned}
$$

So the formula is true for $n+1$. Thus by mathematical induction the formula $\left({ }^{* *}\right)$ is true for all integers $n \geq 1$.
iii) $\left(1-\frac{1}{2^{2}}\right)\left(1-\frac{1}{3^{2}}\right) \cdots\left(1-\frac{1}{n^{2}}\right)$.

Solution. Let

$$
g(n)=\left(1-\frac{1}{2^{2}}\right)\left(1-\frac{1}{3^{2}}\right) \cdots\left(1-\frac{1}{n^{2}}\right) \text { for } n \geq 2 .
$$

Factoring each parenthesis

$$
\begin{aligned}
g(n) & =\left(1-\frac{1}{2}\right)\left(1+\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1+\frac{1}{3}\right)\left(1-\frac{1}{4}\right)\left(1+\frac{1}{4}\right) \cdots\left(1-\frac{1}{n}\right)\left(1+\frac{1}{n}\right) \\
& =\frac{1}{2} \cdot \frac{3}{2} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{3}{4} \cdot \frac{5}{4} \cdots \frac{n-1}{n} \cdot \frac{n+1}{n} \\
& =\frac{n+1}{2 n}
\end{aligned}
$$

So we claim that

$$
\begin{equation*}
g(n)=\left(1-\frac{1}{2^{2}}\right)\left(1-\frac{1}{3^{2}}\right) \cdots\left(1-\frac{1}{n^{2}}\right)=\frac{n+1}{2 n}, \text { for } n \geq 2 \tag{***}
\end{equation*}
$$

For $n=2,1-\frac{1}{2^{2}}=\frac{3}{4}$ and $\frac{n+1}{2 n}=\frac{3}{4}$, so the claim is true for $n=2$. Assume the formula (${ }^{* * *}$) is true for some integer $n \geq 2$, i.e.,

$$
g(n)=\left(1-\frac{1}{2^{2}}\right)\left(1-\frac{1}{3^{2}}\right) \cdots\left(1-\frac{1}{n^{2}}\right)=\frac{n+1}{2 n}
$$

multiplying both sides by $1-\frac{1}{(n+1)^{2}}$,

$$
\begin{aligned}
g(n+1) & =g(n)\left(1-\frac{1}{(n+1)^{2}}\right)=\frac{n+1}{2 n}\left(1-\frac{1}{(n+1)^{2}}\right) \\
& =\frac{n+1}{2 n} \cdot \frac{n^{2}+2 n}{(n+1)^{2}}=\frac{n+2}{2(n+1)}
\end{aligned}
$$

So the formula $\left({ }^{(* *)}\right.$) is true for $n+1$. Thus by induction the formula $\left({ }^{* * *}\right)$ is true for all integers $n \geq 2$.
2) Solve Exercises 6 and 7 on page 64 .

Solution of Exercise 6. Let a and b be integers such that $a<b$, and f be a nonnegative real valued function defined on $[a, b]$. Let S be the set

$$
S=\{(x, y): a \leq x \leq b, 0<y \leq f(x)\} .
$$

We are asked to show that the number of lattice points in S is given by

$$
\sum_{n=a}^{b}[f(n)] .
$$

(Here $[x]$ denotes the greatest integer $\leq x$.)
Note that S does not contain the part of the x-axis in the ordinate set of f.
Given any positive real number $y,[y]$ is the number of integers k such that $0<k \leq y$. If $y=0$, then, there is no integer k such that $0<k \leq y$ and $[y]=0$. So if $y \geq 0$, then $[y]$ is the number of integers k such that $0<k \leq y$. Now if n is an integer, taking $y=f(n)$, we have that $[f(n)]$ is the number of integers k such that $0<k \leq f(n)$, i.e. the number of lattice points on the half open segment $\{(x, y): x=n, 0<y \leq f(n)\}$. As n changes through the integer values in the interval $[a, b]$ we get all the lattice points in the set S.

Solution of Exercise 7. Let a and b be positive integers with no common factors. We are asked to show that

$$
\sum_{n=1}^{b-1}\left[\frac{n a}{b}\right]=\frac{(a-1)(b-1)}{2}
$$

For $b=1$, define the sum on the left hand side as 0 . So assume that $b \geq 2$.
a) Consider the set

$$
S=\left\{(x, y): 1 \leq x \leq b-1,0<y \leq \frac{a}{b} x\right\}
$$

This is the set S in the previous problem with $f(x)=\frac{a}{b} x$. According to the previous problem the number of lattice points in S is $\sum_{n=1}^{b-1}\left[\frac{a}{b} n\right]$.
Now let us count these lattice points some other way. Consider the line segment $y=\frac{a}{b} x$, for
$1 \leq x \leq b-1$. On this line segment there are no lattice points. For if (x, y) is a point on this segment, then it is a lattice point if and only if $x=n$ is an integer (where $1 \leq n \leq b-1$) and $y=\frac{a}{b} n$ is an integer, that is b divides $a n$. The fact that b and a have no common factors implies that b must divide n. But since $1 \leq b \leq n-1$, this is impossible. Consider the rectangle $R=\{(x, y): 0 \leq x \leq b, 0 \leq y \leq a\}$. In the interior of this rectangle there are $(a-1)(b-1)$ lattice points and none of them are on the South West-North East diagonal. Then the lattice points inside the interior of R which are below this diagonal are exactly those which are inside S and the number of them are $\frac{(a-1)(b-1)}{2}$.
b) Let $C=\sum_{n=1}^{b-1}\left[\frac{n a}{b}\right]$. Change the summation index to $k=b-n$. Then

$$
\begin{aligned}
C & =\sum_{n=1}^{b-1}\left[\frac{n a}{b}\right]=\sum_{k=b-1}^{1}\left[\frac{(b-k) a}{b}\right]=\sum_{k=1}^{b-1}\left[a-\frac{k a}{b}\right] \\
& =\sum_{k=1}^{b-1}\left(a+\left[-\frac{k a}{b}\right]\right) \quad(\text { by exercise 4.a) on page 64.) } \\
& =\sum_{k=1}^{b-1}\left(a-\left[\frac{k a}{b}\right]-1\right) \quad(\text { by exercise 4.b) on page 64.) } \\
& =(a-1)(b-1)-\underbrace{\sum_{k=1}^{b-1}\left[\frac{k a}{b}\right]}_{C}
\end{aligned}
$$

So

$$
C=(a-1)(b-1)-C \Rightarrow C=\frac{(a-1)(b-1)}{2} .
$$

3) Evaluate the integral $\int_{-2}^{5}\left|x^{2}-2 x\right| d x$.

Solution: First we examine the sign of $f(x)=x^{2}-2 x$. It is easy to see that $f(x)=0$ when $x=0$ or when $x=2$. It the follows that $\left|x^{2}-2 x\right|=\left\{\begin{array}{lll}x^{2}-2 x & \text { if } & x \notin(0,2), \\ 2 x-x^{2} & \text { if } & x \in[0,2] \text {. }\end{array}\right.$

We can now easily evaluate our integral

$$
\begin{aligned}
\int_{-2}^{5}\left|x^{2}-2 x\right| d x & =\int_{-2}^{0}\left(x^{2}-2 x\right) d x+\int_{0}^{2}\left(2 x-x^{2}\right) d x+\int_{2}^{5}\left(x^{2}-2 x\right) d x \\
& =\left(\frac{x^{3}}{3}-\left.x^{2}\right|_{-2} ^{0}\right)+\left(x^{2}-\left.\frac{x^{3}}{3}\right|_{0} ^{2}\right)+\left(\frac{x^{3}}{3}-\left.x^{2}\right|_{2} ^{5}\right) \\
& =\frac{20}{3}+\frac{4}{3}+18 \\
& =26
\end{aligned}
$$

4) Solve Exercise 14 on page 114: A napkin-ring is formed by drilling a cylindrical hole symmetrically through the center of a solid sphere. If the length of the hole is $2 h$, prove that the volume of the napkin-ring is $\pi a h^{3}$, where a is a rational number.

Solution: Assume that the solid sphere is given by the equation $x^{2}+y^{2}+z^{2}=r^{2}$, where r is its radius. With these coordinates assume that the cylindrical hole that is drilled out is expressed by the equation $x^{2}+y^{2}=c^{2}$ for some positive constant c. Now assume that we cut this napkin-ring by the $y z$-plane, or equivalently by the $x=0$ plane. The resulting picture is depicted in the following figure. If however the napkin-ring is cut by a plane perpendicular to the $y z$-plane along the line $A C$, the slice obtained would look like a ring, consisting of a disk of radius $A C$ out of which which a disk of radius $A B$ is cut off. The area of this ring is $\pi\left(A C^{2}-A B^{2}\right)$. So we set out to write this area explicitly:

Since the sphere $x^{2}+y^{2}+z^{2}=r^{2}$ is cut off by the plane $x=0$, the resulting circle of the figure has the form $y^{2}+z^{2}=r^{2}$.

Since the point (c, h) is on this circle, we have $c^{2}=r^{2}-h^{2}$. Observe that $c=A B$.
Since the point (y, z) is on the circle, we have as above $y^{2}=r^{2}-z^{2}$. Observe again that $y=A C$.

Thus the area of the slice is $\pi\left(A C^{2}-A B^{2}\right)=\pi\left(h^{2}-z^{2}\right)$.
To find the volume we have to add/integrate all these areas as z changes from $-h$ to h.

$$
\begin{aligned}
\text { Volume } & =\int_{-h}^{h} \pi\left(h^{2}-z^{2}\right) d z \\
& =\pi\left(h^{2} z-\left.\frac{z^{3}}{3}\right|_{-h} ^{h}\right) \\
& =\frac{4}{3} \pi h^{3}
\end{aligned}
$$

as claimed. The surprising thing about this result is that the volume of the napkin-ring is independent of the radius of the solid sphere out of which it is cut off.

The figure for the napkin-ring problem.

27 October 2003 Monday.

