MATH 113 Solutions manual for Homework IV

1. Page 187 Exercise 9:

A function f, continuous on [a, b], has a second derivative f'' everywhere on the open interval (a, b). The line segment joining (a, f(a)) and (b, f(b)) intersects the graph of fat a third point (c, f(c)), where a < c < b. Prove that f''(t) = 0 for at least one point tin (a, b).

Solution:

Let L be the line through the points (a, f(a)) and (b, f(b)). Then the equation of L can be written as

$$y - f(a) = \frac{f(b) - f(a)}{b - a}(x - a)$$
 (I)

and

$$y - f(b) = \frac{f(b) - f(a)}{b - a}(x - b)$$
 (II)

(c, f(c)) is on this line. So by (I),

$$f(c) - f(a) = \frac{f(b) - f(a)}{b - a}(c - a) \Rightarrow \frac{f(c) - f(a)}{c - a} = \frac{f(b) - f(a)}{b - a}.$$
 (*)

By (II)

$$f(c) - f(b) = \frac{f(b) - f(a)}{b - a}(c - b) \Rightarrow \frac{f(c) - f(b)}{c - b} = \frac{f(b) - f(a)}{b - a}.$$
 (**)

First we apply the Mean Value Theorem to f on [a, c]. There is $c_1 \in (a, c)$ such that

$$f'(c_1) = \frac{f(c) - f(a)}{c - a} \stackrel{(*)}{=} \frac{f(b) - f(a)}{b - a}$$

Next we apply the Mean Value Theorem to f on [c, b]. There is $c_2 \in (c, b)$ such that

$$f'(c_2) = \frac{f(b) - f(c)}{b - c} \stackrel{(**)}{=} \frac{f(b) - f(a)}{b - a}.$$

So $f'(c_1) = f'(c_2)$. Then we apply Rolle's Theorem to f' on $[c_1, c_2]$. Note that f' is differentiable on (c_1, c_2) (derivative of f' is f'') and f' is continuous on $[c_1, c_2]$ (f' is differentiable on (a, b) implies f' is continuous on (a, b).) So by Rolle's Theorem there is $t \in (c_1, c_2) \subset (a, b)$ such that (f')'(t) = 0, i.e. f''(t) = 0.

2. Page 191 Exercise 9. Sketch the graph of $f(x) = \frac{x}{1+x^2}$.

Solution:

There is no vertical asymptote. $\lim_{x\to\pm\infty} \frac{x}{1+x^2} = 0$. So the line y = 0 is horizontal asymptote as $x \to \pm\infty$.

$$f'(x) = \frac{1 + x^2 - x \cdot 2x}{(1 + x^2)^2} = \frac{1 - x^2}{(1 + x^2)^2} = 0 \Rightarrow x = \pm 1.$$

x		-1		1	
$1 - x^2$		0	+	0	
f'(x)		0	+	0	_
f(x)	~		7		\searrow

$$f''(x) = \frac{-2x(1+x^2)^2 - (1-x^2)2(1+x^2)2x}{(1+x^2)^4} = \frac{2x^3 - 6x}{(1+x^2)^3} = \frac{2x(x^2-3)}{(1+x^2)^3}.$$

x		$-\sqrt{3}$		0		$\sqrt{3}$	
2x	_		_	0	+		+
$x^2 - 3$	+	0	_		_	0	+
f''(x)	_	0	+	0	_	0	+
f(x)	\cap		U		\cap		U

The complete table is

x	$-\infty$		$-\sqrt{3}$		-1		0		1		$\sqrt{3}$		$+\infty$
f'(x)		_		_	0	+		+	0	_		_	
f''(x)		_	0	+		+	0	_		_	0	+	
f(x)	0		$-\frac{\sqrt{3}}{4}$		$-\frac{1}{2}$		0		$\frac{1}{2}$		$\frac{\sqrt{3}}{4}$		0

The graph is then given below:

3-a. Page 195 Exercise 22. a)

An isosceles triangle is inscribed in a circle of radius r as shown in the figure below. If the angle 2α at the apex is restricted to lie between 0 and $\pi/2$, find the largest value and the smallest value of the perimeter of the triangle. Give full details of your reasoning.

Solution:

Let P be the perimeter of the triangle. Then P = 2(u+v). $u/2r = \cos \alpha$, so $u = 2r \cos \alpha$ and $v/u = \sin \alpha$, so $v = u \sin \alpha = 2r \cos \alpha \sin \alpha$. Thus $P = 4r(\cos \alpha + \cos \alpha \sin \alpha)$ and we want to find the maximum and minimum values of P when $0 \le \alpha \le \frac{\pi}{4}$ (given interval).

$$\frac{dP}{d\alpha} = 4r(-\sin\alpha\underbrace{-\sin^2\alpha + \cos^2\alpha}_{\cos 2\alpha = 1-2\sin^2\alpha}) = -4r(2\sin^2\alpha + \sin\alpha - 1) = 0 \Rightarrow \sin\alpha = \frac{1}{2}, \sin\alpha = -1.$$

In the given domain $\sin \alpha \ge 0$, so $\sin \alpha = \frac{1}{2}$, i.e. $\alpha = \frac{\pi}{6}$ is the only critical point. We check $\alpha = \frac{\pi}{6}$, $\alpha = 0$ and $\alpha = \frac{\pi}{4}$.

$$\alpha = \frac{\pi}{6} \implies P = 4r \left(\frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} \cdot \frac{1}{2}\right) = 3\sqrt{3}r \quad \text{(largest)}$$

$$\alpha = 0 \implies P = 4r \quad \text{(smallest)}$$

$$\alpha = \frac{\pi}{4} \implies P = 4r \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2}}{2}\right) = 3\sqrt{2}r$$

So P has maximum at $\alpha = \frac{\pi}{6}$ and $P_{\text{max}} = 3\sqrt{3}r$, P has minimum at $\alpha = 0$ and $P_{\text{min}} = 4r$.

3-b. Page 196 Exercise 22. b)

What is the radius of the smallest circular disk large enough to cover every isosceles triangle of a given perimeter L?

Solution:

Let $f(\alpha) = \cos \alpha + \cos \alpha \sin \alpha$. Then by a) $P = 4rf(\alpha)$. In a) r was constant and we actually found max. and min. of $f(\alpha)$ when $0 \le \alpha \le \frac{\pi}{4}$. In this part P = L is constant, so $r = \frac{L}{4}f(\alpha)$. When $0 \le \alpha \le \frac{\pi}{4}$, $f(\alpha)$ has minimum at $\alpha = 0$, so r has maximum at $\alpha = 0$. So the largest

radius for the circumscribing circle for $0 \le \alpha \le \frac{\pi}{4}$ is $r = \frac{L}{4f(0)} = \frac{L}{4}$, i.e. the radius of the smallest circular disk which covers all isosceles triangles with all three vertices on the circle and $0 \le \alpha \le \frac{\pi}{4}$ and perimeter=L is $\frac{L}{4}$. What about isosceles triangles with perimeter=L and $0 \le \alpha \le \frac{\pi}{4}$? In this case we put them into the disk as in the figure

Since the base length $\leq \frac{L}{2}$, this is possible. Thus the smallest radius in all cases is $r = \frac{L}{4}$.