1. Page 187 Exercise 9:

A function f, continuous on $[a, b]$, has a second derivative $f^{\prime \prime}$ everywhere on the open interval (a, b). The line segment joining $(a, f(a))$ and $(b, f(b))$ intersects the graph of f at a third point $(c, f(c))$, where $a<c<b$. Prove that $f^{\prime \prime}(t)=0$ for at least one point t in (a, b).

Solution:

Let L be the line through the points $(a, f(a))$ and $(b, f(b))$. Then the equation of L can be written as

$$
\begin{equation*}
y-f(a)=\frac{f(b)-f(a)}{b-a}(x-a) \tag{I}
\end{equation*}
$$

and

$$
\begin{equation*}
y-f(b)=\frac{f(b)-f(a)}{b-a}(x-b) \tag{II}
\end{equation*}
$$

$(c, f(c))$ is on this line. So by (I),

$$
\begin{equation*}
f(c)-f(a)=\frac{f(b)-f(a)}{b-a}(c-a) \Rightarrow \frac{f(c)-f(a)}{c-a}=\frac{f(b)-f(a)}{b-a} . \tag{*}
\end{equation*}
$$

By (II)

$$
f(c)-f(b)=\frac{f(b)-f(a)}{b-a}(c-b) \Rightarrow \frac{f(c)-f(b)}{c-b}=\frac{f(b)-f(a)}{b-a}
$$

First we apply the Mean Value Theorem to f on $[a, c]$. There is $c_{1} \in(a, c)$ such that

$$
f^{\prime}\left(c_{1}\right)=\frac{f(c)-f(a)}{c-a} \stackrel{(*)}{=} \frac{f(b)-f(a)}{b-a} .
$$

Next we apply the Mean Value Theorem to f on $[c, b]$. There is $c_{2} \in(c, b)$ such that

$$
f^{\prime}\left(c_{2}\right)=\frac{f(b)-f(c)}{b-c} \stackrel{(* *)}{=} \frac{f(b)-f(a)}{b-a}
$$

So $f^{\prime}\left(c_{1}\right)=f^{\prime}\left(c_{2}\right)$. Then we apply Rolle's Theorem to f^{\prime} on $\left[c_{1}, c_{2}\right]$. Note that f^{\prime} is differentiable on $\left(c_{1}, c_{2}\right)$ (derivative of f^{\prime} is $\left.f^{\prime \prime}\right)$ and f^{\prime} is continuous on $\left[c_{1}, c_{2}\right]\left(f^{\prime}\right.$ is differentiable on (a, b) implies f^{\prime} is continuous on (a, b).) So by Rolle's Theorem there is $t \in\left(c_{1}, c_{2}\right) \subset(a, b)$ such that $\left(f^{\prime}\right)^{\prime}(t)=0$, i.e. $f^{\prime \prime}(t)=0$.
2. Page 191 Exercise 9.

Sketch the graph of $f(x)=\frac{x}{1+x^{2}}$.

Solution:

There is no vertical asymptote. $\lim _{x \rightarrow \pm \infty} \frac{x}{1+x^{2}}=0$. So the line $y=0$ is horizontal asymptote as $x \rightarrow \pm \infty$.

$$
f^{\prime}(x)=\frac{1+x^{2}-x \cdot 2 x}{\left(1+x^{2}\right)^{2}}=\frac{1-x^{2}}{\left(1+x^{2}\right)^{2}}=0 \Rightarrow x= \pm 1
$$

The complete table is

x	$-\infty$		$-\sqrt{3}$		-1		0		1		$\sqrt{3}$	
$f^{\prime}(x)$		-		-	0	+		+	0	-		-
$f^{\prime \prime}(x)$		-	0	+		+	0	-		-	0	+
$f(x)$	0		$-\frac{\sqrt{3}}{4}$		$-\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{\sqrt{3}}{4}$				

The graph is then given below:

3-a. Page 195 Exercise 22. a)
An isosceles triangle is inscribed in a circle of radius r as shown in the figure below. If the angle 2α at the apex is restricted to lie betwen 0 and $\pi / 2$, find the largest value and the smallest value of the perimeter of the triangle. Give full details of your reasoning.

Solution:

Let P be the perimeter of the triangle. Then $P=2(u+v) . u / 2 r=\cos \alpha$, so $u=2 r \cos \alpha$ and $v / u=\sin \alpha$, so $v=u \sin \alpha=2 r \cos \alpha \sin \alpha$. Thus $P=4 r(\cos \alpha+\cos \alpha \sin \alpha)$ and we want to find the maximum and minimum values of P when $0 \leq \alpha \leq \frac{\pi}{4}$ (given interval).
$\frac{d P}{d \alpha}=4 r(-\sin \alpha \underbrace{-\sin ^{2} \alpha+\cos ^{2} \alpha}_{\cos 2 \alpha=1-2 \sin ^{2} \alpha})=-4 r\left(2 \sin ^{2} \alpha+\sin \alpha-1\right)=0 \Rightarrow \sin \alpha=\frac{1}{2}, \sin \alpha=-1$.
In the given domain $\sin \alpha \geq 0$, so $\sin \alpha=\frac{1}{2}$, i.e. $\alpha=\frac{\pi}{6}$ is the only critical point. We check $\alpha=\frac{\pi}{6}, \alpha=0$ and $\alpha=\frac{\pi}{4}$.

$$
\begin{aligned}
& \alpha=\frac{\pi}{6} \Rightarrow P=4 r\left(\frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2} \cdot \frac{1}{2}\right)=3 \sqrt{3} r \quad \text { (largest) } \\
& \alpha=0 \Rightarrow P=4 r \quad \text { (smallest) } \\
& \alpha=\frac{\pi}{4} \Rightarrow P=4 r\left(\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2}}{2}\right)=3 \sqrt{2} r
\end{aligned}
$$

So P has maximum at $\alpha=\frac{\pi}{6}$ and $P_{\max }=3 \sqrt{3} r, P$ has minimum at $\alpha=0$ and $P_{\min }=4 r$.
3-b. Page 196 Exercise 22. b)
What is the radius of the smallest circular disk large enough to cover every isosceles triangle of a given perimeter L ?

Solution:

Let $f(\alpha)=\cos \alpha+\cos \alpha \sin \alpha$. Then by a) $P=4 r f(\alpha)$. In a) r was constant and we actually found max. and min. of $f(\alpha)$ when $0 \leq \alpha \leq \frac{\pi}{4}$. In this part $P=L$ is constant, so $r=\frac{L}{4} f(\alpha)$. When $0 \leq \alpha \leq \frac{\pi}{4}, f(\alpha)$ has minimum at $\alpha=0$, so r has maximum at $\alpha=0$. So the largest
radius for the circumscribing circle for $0 \leq \alpha \leq \frac{\pi}{4}$ is $r=\frac{L}{4 f(0)}=\frac{L}{4}$, i.e. the radius of the smallest circular disk which covers all isosceles triangles with all three vertices on the circle and $0 \leq \alpha \leq \frac{\pi}{4}$ and perimeter $=\mathrm{L}$ is $\frac{L}{4}$. What about isosceles triangles with perimeter $=\mathrm{L}$ and $0 \leq \alpha \leq \frac{\pi}{4}$? In this case we put them into the disk as in the figure

L/2

Since the base length $\leq \frac{L}{2}$, this is possible. Thus the smallest radius in all cases is $r=\frac{L}{4}$.

