MATH 113 HOMEWORK 5
 Solutions

1-a. Page 237 Exercise 24, Evaluate $\int \frac{d x}{x \log x}$.
Solution: Making the substitution $u=\log x$ we get

$$
\int \frac{d x}{x \log x}=\int \frac{d u}{u}=\log u+C=\log |\log x|+C
$$

1-b. Page 237 Exercise 26, Evaluate $\int \frac{\log |x| d x}{x \sqrt{1+\log |x|}}$.
Solution: Making the substitution $u=\sqrt{1+\log |x|}$ we get $d u=\frac{d x}{2 x \sqrt{1+\log |x|}}$ and $\log |x|=u^{2}-1$. Then

$$
\begin{aligned}
\int \frac{\log |x| d x}{x \sqrt{1+\log |x|}} & =2 \int\left(u^{2}-1\right) d u \\
& =\frac{2}{3} u\left(u^{2}-3\right)+C \\
& =\frac{2}{3} \sqrt{1+\log |x|}(\log |x|-2)+C
\end{aligned}
$$

2-a. Page 249 Exercise 15, Evaluate $\int x^{2} e^{x} d x$.
Solution: Try integration by parts with $u=x^{2}$ to get

$$
\int x^{2} e^{x} d x=x^{2} e^{x}-2 \int x e^{x} d x
$$

With the second integral try integration by parts with $u=x$ to get

$$
\int x e^{x} d x=x e^{x}-\int e^{x} d x=x e^{x}-e^{x}+C
$$

Putting these together we get

$$
\int x^{2} e^{x} d x=\left(x^{2}-2 x+2\right) e^{x}+C
$$

2-b. Page 249 Exercise 18, Evaluate $\int x^{3} e^{x^{2}} d x$.
Solution: First substitute $t=x^{2}$ to get

$$
\int x^{3} e^{x^{2}} d x=\frac{1}{2} \int t e^{-t} d t
$$

Then try integration by parts with $d u=t$ to get

$$
\int t e^{-t} d t=-t e^{-t}+\int e^{-t} d t=-t e^{-t}-e^{-t}+C .
$$

Putting these together we get

$$
\int x^{3} e^{x^{2}} d x=-\frac{1}{2}\left(x^{2}+1\right) e^{-x^{2}}+C
$$

3. Page 250 Exercise 42: If n is a positive integer and if $x>0$, show that

$$
\left(1+\frac{x}{n}\right)^{n}<e^{x}, \quad \text { and that } \quad e^{x}<\left(1-\frac{x}{n}\right)^{-n} \quad \text { if } \quad x<n .
$$

By choosing a suitable value of n, deduce that $2.5<e<2.99$.
Solution: For the first inequality we observe, after taking the logarithm of both sides, that the inequality holds if and only if the function $f(x)=x-n \log \left(1+\frac{x}{n}\right)$ is positive for all $x>0$ and for all positive integers n.

We calculate that $f(0)=0$ and $f^{\prime}(x)>0$, so $f(x)>0$ as required, hence the first inequality holds.

Similarly, the second inequality holds if and only if the function $f(x)=x+n\left(1-\frac{x}{n}\right)$ is negative for all positive integers n and for all x with $0<x<n$.

Again we calculate to find that under the given conditions $f(0)=0$ and $f^{\prime}(x)<0$ so $f(x)<0$ as required, and the second inequality holds.

Using $n=6$ we get $2.521626376<e<2.985984001$.

