MATH 113 Solutions manual for Homework VI

1. Page 278 Exercise 1:

Draw graphs of the Taylor Polynomials $T_{3}(\sin x)=x-x^{3} / 3$! and $T_{5}(\sin x)=x-x^{3} / 3!+$ $x^{5} / 5$!. Pay careful attention to the points where the curves cross the x-axis. Compare these graphs with that of $f(x)=\sin x$.

Solution:

The graphs of $T_{3}(\sin x), T_{5}(\sin x)$ and $\sin x$ are given below:

2. Page 278 Exercise 9:

Let α be a real number. Show that

$$
T_{n}\left[(1+x)^{\alpha}\right]=\sum_{k=0}^{n}\binom{\alpha}{k} x^{k} \quad \text { where } \quad\binom{\alpha}{k}=\frac{\alpha(\alpha-1) \cdots(\alpha-k+1)}{k!} .
$$

Solution:

Let $f(x)=(1+x)^{\alpha}$. By taking successive derivatives of f and evaluating at $x=0$ we find that:
$f(x)=(1+x)^{\alpha}, f(0)=1$
$f^{\prime}(x)=\alpha(1+x)^{\alpha-1}, f^{\prime}(0)=\alpha$,
$f^{\prime \prime}(x)=\alpha(\alpha-1)(1+x)^{\alpha-2}, f^{\prime \prime}(0)=\alpha(\alpha-1)$,
$\vdots f^{(k)}(x)=\alpha(\alpha-1)(\alpha-2) \cdots(\alpha-k+1)(1+x)^{\alpha-k}, f^{(k)}(0)=\alpha(\alpha-1)(\alpha-2) \cdots(\alpha-k+1)$.
The general term of the Taylor polynomial around 0 then becomes
$\frac{f^{(k)}(0)}{k!}$, which is precisely $\binom{\alpha}{k}$.

3-a. Find $T_{9}(\tan x ; 0)$.
Solution:
$T_{9}(\tan x ; 0)=x+\frac{1}{3} x^{3}+\frac{2}{15} x^{5}+\frac{17}{315} x^{7}+\frac{62}{2835} x^{9}$.

3-b. Find $T_{n}(\sin x ; \pi / 3)$.

Solution:

$$
T_{n}(\sin x ; \pi / 3)=\sum_{k=0}^{n} \frac{\epsilon_{k}}{2 \cdot k!}\left(x-\frac{\pi}{3}\right)^{k}, \quad \text { where } \quad \epsilon_{k}=\left\{\begin{aligned}
\sqrt{3} & \text { if } k \equiv 0 \bmod 4 \\
1 & \text { if } k \equiv 1 \bmod 4 \\
-\sqrt{3} & \text { if } k \equiv 2 \bmod 4 \\
-1 & \text { if } k \equiv 3 \bmod 4
\end{aligned}\right.
$$

