Math 113 Calculus - Midterm Exam II SOLUTIONS

Q-1) Find the minimum and maximum values, if they exist, of the function

$$
f(x)=x^{\log x}, \quad 0<x<\infty
$$

Solution: Clearly $f(x)$ is unbounded as $x \rightarrow \infty$, so no maximum exists. We can only expect to find a minimum value. For this we examine the derivative of the function. Note that $f(x)=x^{\log x}=e^{(\log x)^{2}}$, so $f^{\prime}(x)=e^{(\log x)^{2}}(2 \log x)\left(\frac{1}{x}\right)$.
$f^{\prime}(x)=0$ for $x=1$. Examining the sign of the derivative we find:
$f^{\prime}(x)<0$ for $0<x<1$, and $f^{\prime}(x)>0$ for $1<x<\infty$.
So $f(x)$ descend to $f(1)=1$ and from there on increases to infinity. Hence the minimum value is 1 .

Q-2) Evaluate $\int_{0}^{1} \frac{d x}{\left(1+x^{2}\right)^{2}}$.
Solution: We start with the integral $\int \frac{d x}{1+x^{2}}$ and apply integration by parts with $d u=\frac{1}{1+x^{2}}$ to obtain

$$
\int \frac{d x}{1+x^{2}}=\frac{x}{1+x^{2}}+2 \int \frac{x^{2}}{\left(1+x^{2}\right)^{2}} d x
$$

We observe that

$$
\int \frac{x^{2}}{\left(1+x^{2}\right)^{2}} d x=\int \frac{x^{2}+1-1}{\left(1+x^{2}\right)^{2}} d x=\int \frac{d x}{1+x^{2}}-\int \frac{d x}{\left(1+x^{2}\right)^{2}}
$$

We already know that $\int \frac{d x}{1+x^{2}}=\arctan x+C$. Putting these together we find

$$
\int \frac{d x}{\left(1+x^{2}\right)^{2}}=\frac{1}{2}\left(\frac{x}{1+x^{2}}+\arctan x\right)+C
$$

and finally

$$
\int_{0}^{1} \frac{d x}{\left(1+x^{2}\right)^{2}}=\frac{2+\pi}{8}
$$

Q-3) Evaluate $\int \frac{x+2}{x^{2}+x+1} d x$.
Solution: We first observe that

$$
\frac{x+2}{x^{2}+x+1}=\frac{1}{2} \frac{2 x+1}{x^{2}+x+1}+\frac{3}{2} \frac{1}{x^{2}+x+1} .
$$

Using substitution in the following integral with $u=x^{2}+x+1$ we find

$$
\int \frac{2 x+1}{x^{2}+x+1} d x=\int \frac{d u}{u}=\log u+C=\log \left(x^{2}+x+1\right)+C
$$

And for the other fraction, after completing to a square we have

$$
\int \frac{1}{x^{2}+x+1} d x=\int \frac{d x}{\left(x+\frac{1}{2}\right)^{2}+\frac{3}{4}}=\frac{2}{\sqrt{3}} \arctan \frac{2}{\sqrt{3}}\left(x+\frac{1}{2}\right)+C
$$

Putting these together we get

$$
\int \frac{x+2}{x^{2}+x+1} d x=\frac{1}{2} \log \left(x^{2}+x+1\right)+\sqrt{3} \arctan \frac{2}{\sqrt{3}}\left(x+\frac{1}{2}\right)+C .
$$

Q-4) Among all circular right cones inscribed in a sphere of radius 6 units, find the volume of the one
a) with the minimum volume.
b) with the maximum volume.

Solution: If the radius of the cone is r and its height is h, then the volume is $V=\frac{\pi}{3} r^{2} h$.
Let x measure how far below the center of the sphere lies the base of the cone.
Then $r^{2}=6^{2}-x^{2}, h=x+6$ and the volume becomes

$$
V(x)=\frac{\pi}{3}\left(36-x^{2}\right)(6+x), \quad-6 \leq x \leq 6
$$

We find that $V^{\prime}(x)=0$ for $x=-6$ and for $x=2$. Calculating $V(x)$ at the critical and the end points gives

$$
V(-6)=0, \quad V(2)=\frac{256}{3} \pi, \quad V(6)=0 .
$$

This then answers both questions about the minimum and maximum values.

Q-5) The graph of a continuous function f is revolved around the x-axis to obtain a solid of revolution. For every $a \in[0, \pi / 2]$, the volume of the solid obtained by revolving the graph of $y=f(x)$ for $x \in[0, a]$ is given by

$$
2^{a}+\arctan a+\cosh a+C
$$

for some constant C. For which value of C does such a function f exist? Find f for that value of C.

Solution: For the existence of such a function we must have $\left.\left(2^{a}+\arctan a+\cosh a+C\right)\right|_{a=0}=$ 0 , which corresponds to saying that if we have no graph, then we have no volume. This gives $C=-2$. The volume of the solid of revolution formula gives

$$
\pi \int_{0}^{x} f^{2}(t) d t=2^{x}+\arctan x+\cosh x-2, \quad x \in(0, \pi / 2) .
$$

Taking the derivative of both sides with respect to x, and using the fundamental theorem of calculus on the left hand side gives

$$
\pi f^{2}(x)=2^{x} \log 2+\frac{1}{1+x^{2}}+\sinh x
$$

$$
f(x)=\sqrt{\frac{1}{\pi}\left(2^{x} \log 2+\frac{1}{1+x^{2}}+\sinh x\right)} .
$$

