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Exercise 12, page 45 of Apostol’s Calculus:
(a) Use the binomial theorem to prove that for n a positive integer we have
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(b) If n > 1, use part (a) and the fact that 2n < n! for all n ≥ 4, to deduce the inequalities
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Solution:
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(b) First recall that 2n < n! for n ≥ 4, which can be easily proven by induction. We will use

this in the form
1

n!
<

1

2n
for n ≥ 4.

Now back to our problem. Clearly each 1 − r

n
< 1, so
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part of this solution we get
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For the second inequality we simply add the terms on the right hand side. By direct computation



we see that the right hand side is < 3 for n = 2, 3. So take n ≥ 4.
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This proves the inequalities
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For the remaining inequality first observe that for n = 2, we clearly have 2 < (1 + 1/2)2 = 9/4.
For n > 2 we use the result of part (a):
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> 2, since each term in the summation is positive.

Hence we finally get, for all n > 1,
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