Date: October 2004
Instructor: Ali Sinan Sertöz

Exercise 12, page 45 of Apostol's Calculus:

(a) Use the binomial theorem to prove that for n a positive integer we have

$$
\left(1+\frac{1}{n}\right)^{n}=1+\sum_{k=1}^{n}\left\{\frac{1}{k!} \prod_{r=0}^{k-1}\left(1-\frac{r}{n}\right)\right\} .
$$

(b) If $n>1$, use part (a) and the fact that $2^{n}<n$! for all $n \geq 4$, to deduce the inequalities

$$
2<\left(1+\frac{1}{n}\right)^{n}<1+\sum_{k=1}^{n} \frac{1}{k!}<3
$$

Solution:

(a) Binomial theorem says $(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{n-k} b^{k}$, where $\binom{n}{k}=\frac{n!}{k!(n-k)!}$ is the binomial coefficient. Using this we write

$$
\begin{aligned}
\left(1+\frac{1}{n}\right)^{n} & =\sum_{k=0}^{n}\binom{n}{k} \frac{1}{n^{k}} \\
& =1+\sum_{k=1}^{n}\binom{n}{k} \frac{1}{n^{k}} \\
& =1+\sum_{k=1}^{n} \frac{n!}{k!(n-k)!} \frac{1}{n^{k}} \\
& =1+\sum_{k=1}^{n} \frac{1}{k!}\left\{\frac{n!}{(n-k)!} \frac{1}{n^{k}}\right\} \\
& =1+\sum_{k=1}^{n} \frac{1}{k!}\left\{\frac{(n-k+1)(n-k+2) \cdots(n-1)(n)}{n^{k}}\right\} \\
& =1+\sum_{k=1}^{n} \frac{1}{k!}\left\{\prod_{r=0}^{k-1}\left(\frac{(n-r)}{n}\right)\right\} \\
& =1+\sum_{k=1}^{n} \frac{1}{k!}\left\{\prod_{r=0}^{k-1}\left(1-\frac{r}{n}\right)\right\} .
\end{aligned}
$$

(b) First recall that $2^{n}<n$! for $n \geq 4$, which can be easily proven by induction. We will use this in the form $\frac{1}{n!}<\frac{1}{2^{n}}$ for $n \geq 4$.

Now back to our problem. Clearly each $1-\frac{r}{n}<1$, so $\prod_{r=0}^{k-1}\left(1-\frac{r}{n}\right)<1$. Hence from the first part of this solution we get

$$
\left(1+\frac{1}{n}\right)^{n}<1+\sum_{k=1}^{n} \frac{1}{k!} .
$$

For the second inequality we simply add the terms on the right hand side. By direct computation
we see that the right hand side is <3 for $n=2,3$. So take $n \geq 4$.

$$
\begin{aligned}
1+\sum_{k=1}^{n} \frac{1}{k!} & =1+\frac{1}{2!}+\frac{1}{3!}+\left(\frac{1}{4!}+\cdots+\frac{1}{n!}\right) \\
& =\frac{8}{3}+\left(\frac{1}{4!}+\cdots+\frac{1}{n!}\right) \\
& <\frac{8}{3}+\left(\frac{1}{2^{4}}+\cdots+\frac{1}{2^{n}}\right) \\
& =\frac{8}{3}+\frac{1}{2^{4}}\left(1+\frac{1}{2}+\cdots+\frac{1}{2^{n-4}}\right) \\
& =\frac{8}{3}+\frac{1}{16}\left(\frac{1-(1 / 2)^{n-3}}{1-(1 / 2)}\right) \\
& =\frac{8}{3}+\frac{1}{8}\left(1-2^{3-n}\right) \\
& <\frac{8}{3}+\frac{1}{8}=\frac{67}{24}<3 .
\end{aligned}
$$

This proves the inequalities

$$
\left(1+\frac{1}{n}\right)^{n}<1+\sum_{k=1}^{n} \frac{1}{k!}<3
$$

For the remaining inequality first observe that for $n=2$, we clearly have $2<(1+1 / 2)^{2}=9 / 4$. For $n>2$ we use the result of part (a):

$$
\begin{aligned}
\left(1+\frac{1}{n}\right)^{n} & =1+\sum_{k=1}^{n} \frac{1}{k!}\left\{\prod_{r=0}^{k-1}\left(1-\frac{r}{n}\right)\right\} \\
& =1+1+\sum_{k=2}^{n} \frac{1}{k!}\left\{\prod_{r=0}^{k-1}\left(1-\frac{r}{n}\right)\right\}
\end{aligned}
$$

>2, since each term in the summation is positive.
Hence we finally get, for all $n>1$,

$$
2<\left(1+\frac{1}{n}\right)^{n}<1+\sum_{k=1}^{n} \frac{1}{k!}<3
$$

send comments to sertoz@bilkent.edu.tr

