Math 113 Homework 2 Due: 9 November 2004 Tuesday class hour. Instructor: Ali Sinan Sertöz

Q-1) Exercise 3 on page 155. Use the identity $1 + x^6 = (1 + x^2)(1 - x^2 + x^4)$ and the weighted mean value theorem for integrals to prove that for a > 0, we have

$$\frac{1}{1+a^2}\left(a-\frac{a^3}{3}+\frac{a^5}{5}\right) \le \int_0^a \frac{dx}{1+x^2} \le a-\frac{a^3}{3}+\frac{a^5}{5}.$$

Solution: The integrand, $\frac{1}{1+x^2}$ can be written as f(x)g(x) where $f(x) = \frac{1}{1+x^6}$ and $g(x) = 1 - x^2 + x^4$. We observe that g does not change sign on [0, a]. Moreover,

$$\int_0^a g(x) \, dx = a - \frac{a^3}{3} + \frac{a^5}{5}, \text{ min } f \text{ on } [0, a] \text{ is } \frac{1}{1 + a^2}, \text{ and max } f \text{ on } [0, a] \text{ is } 1.$$

The weighted mean value theorem in this case says that $\int_0^a f(x)g(x) \, dx = f(c) \int_0^a g(x) \, dx =$ $f(c)\left(a-\frac{a^3}{3}+\frac{a^5}{5}\right)$ for some $c \in [0,a]$. Since no matter where c is in [0,a] we must have $\frac{1}{1+a^2} \le f(c) \le 1$, the required result follows.

- Q-2) Exercise 4 on page 155. One of the following two statements is incorrect. Explain why it is wrong.

(a) The integral $\int_{2\pi}^{4\pi} (\sin t)/t \, dt > 0$ because $\int_{2\pi}^{4\pi} (\sin t)/t \, dt > \int_{3\pi}^{4\pi} |\sin t|/t \, dt$. (b) The integral $\int_{2\pi}^{4\pi} (\sin t)/t \, dt = 0$ because, by the weighted mean value theorem for integrals, for some c between 2π and 4π we have

$$\int_{2\pi}^{4\pi} \frac{\sin t}{t} \, dt = \frac{1}{c} \int_{2\pi}^{4\pi} \sin t \, dt = \frac{\cos(2\pi) - \cos(4\pi)}{c} = 0.$$

Solution: This is an exercise in reading and understanding the statements of theorems. The weighted mean value theorem works only when the function q does not change sign in the given interval. If you follow the proof of that theorem you will see that this fact is crucially used. Since sin t changes sign in the interval $[2\pi, 4\pi]$, this theorem cannot be used here. Therefore statement (b) is incorrect.

- **Q-3)** Let $f : [0,1] \to [0,1]$ be a 2-1 onto function. This means that for every $y \in [0,1]$ there are exactly two points x_1 and x_2 in [0,1] such that $f(x_1) = f(x_2) = y$.
 - a) Show that f is not continuous on [0, 1].
 - **b)** Construct such an f.

Solution:

(a): Suppose f is continuous. Let $x_1 < x_2 \in [0, 1]$ be the two points where $f(x_1) = f(x_2) = 1$. Let $c_0 \in (x_1, x_2)$ and let k be any value with $f(c_0) < k < 1$.

Since $f: [x_1, c_0] \longrightarrow [0, 1]$ is continuous, there is a point $c_1 \in (x_1, c_0)$ such that $f(c_1) = k$.

Similarly since $f : [c_0, x_2] \longrightarrow [0, 1]$ is continuous, there is a point $c_2 \in (c_0, x_2)$ such that $f(c_2) = k$.

Thus all the values in $(f(c_0), 1]$ are already taken twice by f in the interval $[x_1, x_2]$. In particular the value k is already taken twice here.

Case 1: $0 < x_1$. Since f is two-to-one, and since all the values in $(f(c_0), 1]$ are already taken twice by f in the interval $[x_1, x_2]$, we must have $f(0) \leq f(c_0)$. On the other hand, $f : [0, x_1] \longrightarrow [0, 1]$ is continuous and we have $f(0) \leq f(c_0) < k < f(x_1) = 1$. Therefore by the intermediate value theorem for continuous functions, there exists a point $x_3 \in (0, x_1)$ with $f(x_3) = k$. But this is the third time f is attaining the value k, and this contradicts the two-to-one property of f.

Case 2: $0 = x_1 < x_2 < 1$. Repeat the above argument by considering f on $[x_2, 1]$.

Case 3: $0 = x_1 < x_2 = 1$. Now let $t_1 < t_2 \in (0, 1)$ be the points where $f(t_1) = f(t_2) = 0$. Since f(0) = 1 and $f(t_1) = 0$, f takes all the values in [0, 1] at least once in the interval $[0, t_1]$. Similarly, since $f(t_2) = 0$ and f(1) = 1, f again takes all the values in [0, 1] at least once in the interval $[t_2, 1]$. Thus no value is left for the function on the interval (t_1, t_2) , which contradicts the fact that f is defined there.

So f cannot be continuous.

(b): There are many ways to construct such functions. In all cases you use the fact that there are infinitely many points in [0, 1]. Here is one such function.

 $f(x) = \begin{cases} 2x - 1 & \text{if } x \in [\frac{1}{2}, 1]. \\ 4x & \text{if } x = \frac{1}{2^n} \text{ for some integer } n > 1. \\ 2x & \text{Otherwise.} \end{cases}$

comments to sertoz@bilkent.edu.tr