Math 113 Homework 2
Due: 9 November 2004 Tuesday class hour.
Instructor: Ali Sinan Sertöz
Q-1) Exercise 3 on page 155. Use the identity $1+x^{6}=\left(1+x^{2}\right)\left(1-x^{2}+x^{4}\right)$ and the weighted mean value theorem for integrals to prove that for $a>0$, we have

$$
\frac{1}{1+a^{2}}\left(a-\frac{a^{3}}{3}+\frac{a^{5}}{5}\right) \leq \int_{0}^{a} \frac{d x}{1+x^{2}} \leq a-\frac{a^{3}}{3}+\frac{a^{5}}{5} .
$$

Solution: The integrand, $\frac{1}{1+x^{2}}$ can be written as $f(x) g(x)$ where $f(x)=\frac{1}{1+x^{6}}$ and $g(x)=$ $1-x^{2}+x^{4}$. We observe that g does not change sign on $[0, a]$. Moreover,
$\int_{0}^{a} g(x) d x=a-\frac{a^{3}}{3}+\frac{a^{5}}{5}, \min f$ on $[0, a]$ is $\frac{1}{1+a^{2}}$, and $\max f$ on $[0, a]$ is 1.
The weighted mean value theorem in this case says that $\int_{0}^{a} f(x) g(x) d x=f(c) \int_{0}^{a} g(x) d x=$ $f(c)\left(a-\frac{a^{3}}{3}+\frac{a^{5}}{5}\right)$ for some $c \in[0, a]$. Since no matter where c is in $[0, a]$ we must have $\frac{1}{1+a^{2}} \leq f(c) \leq 1$, the required result follows.

Q-2) Exercise 4 on page 155. One of the following two statements is incorrect. Explain why it is wrong.
(a) The integral $\int_{2 \pi}^{4 \pi}(\sin t) / t d t>0$ because $\int_{2 \pi}^{4 \pi}(\sin t) / t d t>\int_{3 \pi}^{4 \pi}|\sin t| / t d t$.
(b) The integral $\int_{2 \pi}^{4 \pi}(\sin t) / t d t=0$ because, by the weighted mean value theorem for integrals, for some c between 2π and 4π we have

$$
\int_{2 \pi}^{4 \pi} \frac{\sin t}{t} d t=\frac{1}{c} \int_{2 \pi}^{4 \pi} \sin t d t=\frac{\cos (2 \pi)-\cos (4 \pi)}{c}=0
$$

Solution: This is an exercise in reading and understanding the statements of theorems. The weighted mean value theorem works only when the function g does not change sign in the given interval. If you follow the proof of that theorem you will see that this fact is crucially used. Since $\sin t$ changes sign in the interval $[2 \pi, 4 \pi]$, this theorem cannot be used here. Therefore statement (b) is incorrect.

Q-3) Let $f:[0,1] \rightarrow[0,1]$ be a 2-1 onto function. This means that for every $y \in[0,1]$ there are exactly two points x_{1} and x_{2} in $[0,1]$ such that $f\left(x_{1}\right)=f\left(x_{2}\right)=y$.
a) Show that f is not continuous on $[0,1]$.
b) Construct such an f.

Solution:

(a): Suppose f is continuous. Let $x_{1}<x_{2} \in[0,1]$ be the two points where $f\left(x_{1}\right)=f\left(x_{2}\right)=1$. Let $c_{0} \in\left(x_{1}, x_{2}\right)$ and let k be any value with $f\left(c_{0}\right)<k<1$.

Since $f:\left[x_{1}, c_{0}\right] \longrightarrow[0,1]$ is continuous, there is a point $c_{1} \in\left(x_{1}, c_{0}\right)$ such that $f\left(c_{1}\right)=k$.
Similarly since $f:\left[c_{0}, x_{2}\right] \longrightarrow[0,1]$ is continuous, there is a point $c_{2} \in\left(c_{0}, x_{2}\right)$ such that $f\left(c_{2}\right)=k$.

Thus all the values in $\left(f\left(c_{0}\right), 1\right]$ are already taken twice by f in the interval $\left[x_{1}, x_{2}\right]$. In particular the value k is already taken twice here.

Case 1: $0<x_{1}$. Since f is two-to-one, and since all the values in $\left(f\left(c_{0}\right), 1\right]$ are already taken twice by f in the interval $\left[x_{1}, x_{2}\right]$, we must have $f(0) \leq f\left(c_{0}\right)$. On the other hand, $f:\left[0, x_{1}\right] \longrightarrow[0,1]$ is continuous and we have $f(0) \leq f\left(c_{0}\right)<k<f\left(x_{1}\right)=1$. Therefore by the intermediate value theorem for continuous functions, there exists a point $x_{3} \in\left(0, x_{1}\right)$ with $f\left(x_{3}\right)=k$. But this is the third time f is attaining the value k, and this contradicts the two-to-one property of f.

Case 2: $0=x_{1}<x_{2}<1$. Repeat the above argument by considering f on $\left[x_{2}, 1\right]$.
Case 3: $0=x_{1}<x_{2}=1$. Now let $t_{1}<t_{2} \in(0,1)$ be the points where $f\left(t_{1}\right)=f\left(t_{2}\right)=0$. Since $f(0)=1$ and $f\left(t_{1}\right)=0, f$ takes all the values in $[0,1]$ at least once in the interval $\left[0, t_{1}\right]$. Similarly, since $f\left(t_{2}\right)=0$ and $f(1)=1, f$ again takes all the values in $[0,1]$ at least once in the interval $\left[t_{2}, 1\right]$. Thus no value is left for the function on the interval $\left(t_{1}, t_{2}\right)$, which contradicts the fact that f is defined there.

So f cannot be continuous.
(b): There are many ways to construct such functions. In all cases you use the fact that there are infinitely many points in $[0,1]$. Here is one such function.
$f(x)= \begin{cases}2 x-1 & \text { if } x \in\left[\frac{1}{2}, 1\right] . \\ 4 x & \text { if } x=\frac{1}{2^{n}} \text { for some integer } n>1 . \\ 2 x & \text { Otherwise. }\end{cases}$

