Math 113 Homework 3
Due: 12 November 2004 Friday class hour.
Instructor: Ali Sinan Sertöz
Q-1) Exercise 24 on page 181. A reservoir has the shape of a right circular cone. The altitude is 10 meters, and the radius of the base is 4 meters. Water is flowing into the reservoir at a constant rate of 5 cubic meters per minute. How fast is the water level rising when the depth of the water is 5 meters if (a) the vertex of the cone is up? (b) the vertex of the cone is down?

Solution:

Let r be the radius of water surface in the reservoir when the water height is h. Note that both r and h are functions of time t.
(a) We find from similar triangles that $\frac{r}{4}=\frac{10-h}{10}$, so $r=\frac{2}{5}(10-h)$. The volume of water in the reservoir at time t is

$$
V=\frac{160 \pi}{3}-\frac{\pi}{3} r^{2}(10-h)=\frac{160 \pi}{3}-\frac{4 \pi}{75}(10-h)^{3} .
$$

Taking the derivative of V with respect to time and using the chain rule we get

$$
V^{\prime}=\frac{4 \pi}{25}(10-h)^{2} h^{\prime}
$$

We know that $V^{\prime}=5$ when $h=5$. Putting these in we find $h^{\prime}=\frac{5}{4 \pi}$.
(b) In this case $\frac{r}{4}=\frac{h}{10}$, so $r=\frac{2}{5} h$. The volume of water in the reservoir at time t is

$$
V=\frac{\pi}{3} r^{2} h=\frac{4 \pi}{75} h^{3} .
$$

Taking the derivative of V with respect to time and using the chain rule we get

$$
V^{\prime}=\frac{4 \pi}{25} h^{2} h^{\prime}
$$

We know that $V^{\prime}=5$ when $h=5$. Putting these in we find $h^{\prime}=\frac{5}{4 \pi}$.

Q-2) Exercise 1 on page 186. Show that on the graph of any quadratic polynomial the chord joining the points for which $x=a$ and $x=b$ is parallel to the tangent line at the midpoint $x=(a+b) / 2$.

Solution:

Let $f(x)=c_{2} x^{2}+c_{1} x+c_{0}$ be a general quadratic.
The slope of the chord is $m_{1}=\frac{f(b)-f(a)}{b-a}=\frac{c_{2}\left(b^{2}-a^{2}\right)+c_{1}(b-a)}{b-a}=c_{2}(b+a)+c_{1}$.
The slope of the tangent line $m_{2}=f^{\prime}\left(\frac{a+b}{2}\right)=2 c_{2}\left(\frac{a+b}{2}\right)+c_{1}=c_{2}(a+b)+c_{1}$.
So $m_{1}=m_{2}$.

Q-3) Exercise 2 on page 186. Use Rolle's theorem to prove that, regardless of the value of b, there is at most one point x in the interval $-1 \leq x \leq 1$ for which $x^{3}-3 x+b=0$.

Solution:

Let $f(x)=x^{3}-3 x+b$. Let $a, b \in[-1,1]$ be two distinct points where $f(a)=f(b)=0$. Then there is a point $c \in(a, b) \subset(-1,1)$ where $f^{\prime}(c)=0$. But $f^{\prime}(c)=3\left(c^{2}-1\right)$ and cannot vanish at any point inside $(-1,1)$. Therefore f can have at most one zero in this interval.

Here is an easier solution without using Rolle's theorem. Since $f^{\prime}(x)=3\left(x^{2}-1\right)<0$ on $(-1,1)$, then $f(x)$ is decreasing. Therefore f cannot have more than one zero. (Actually, using the intermediate value theorem for f we can conclude that f has a zero in this interval when $-2<b<2$.)

Q-4) Exercise 5 on page 186. Show that $x^{2}=x \sin x+\cos x$ for exactly two real values of x.

Solution:

Let $f(x)=x^{2}-x \sin x-\cos x$. We want to show that $f(x)=0$ for exactly two real values of x. Since $f(-x)=f(x)$, it suffices to show that $f(x)=0$ for exactly one value of $x>0$.

It is easy to show that $2 x \leq f^{\prime}(x) \leq 3 x$ for $x>0$, so f is increasing for $x>0$. This shows that f can have at most one zero for $x>0$. Since $f(0)=-1$ and $f(2) \geq 1$, there exists exactly one zero for f for $x>0$. In fact $f(\pm 1,220468466)=0$.

Comments to sertoz@bilkent.edu.tr

