Q-1) Evaluate the following integral: $\int \cos x^{1 / 3} d x$.
Solution: Let $u=x^{1 / 3}$ or equivalently $u^{3}=x$ and $d x=3 u^{2} d u$. The integral then becomes $3 \int u^{2} \cos u d u$, which can be evaluated by repeated use of by parts or by using tabular integration. Substituting back $u=x^{1 / 3}$ we find
$\int \cos x^{1 / 3} d x=3 x^{2 / 3} \sin x^{1 / 3}+6 x^{1 / 3} \cos x^{1 / 3}-6 \sin x^{1 / 3}+C$

Q-2) Evaluate the following integral: $\int e^{x} \sin x d x$.
Solution: Integration by parts first gives $\int e^{x} \sin x d x=e^{x} \sin x-\int e^{x} \cos x d x$. Using integration by parts again with the second integral gives $\int e^{x} \sin x d x=e^{x} \sin x-e^{x} \cos x-$ $\int e^{x} \sin x d x$. Solving for our integral from this we find
$\int e^{x} \sin x d x=\frac{1}{2} e^{x}(\sin x-\cos x)+C$

Q-3) Evaluate the following integral: $\int \sec ^{4} x d x$.
Solution: Start with integration by parts with $u=\sec ^{2} x$ to get $\int \sec ^{4} x d x=\sec ^{2} x \tan x-$ $2 \int \sec ^{2} x \tan ^{2} x d x$. Now $\int \sec ^{2} x \tan ^{2} x d x=\int \sec ^{2} x\left(\sec ^{2} x-1\right) d x=\int \sec ^{4} x d x-\int \sec ^{2} x d x=$ $\int \sec ^{4} x d x-\tan x$. Putting this in and solving for the integral gives
$\int \sec ^{4} x d x=\frac{1}{3} \sec ^{2} x \tan x+\frac{2}{3} \tan x+C$.

Q-4) Differentiate the following function: $f(x)=\ln \left(x^{2}+x+1\right)+3^{\cos x}+x^{x^{x}}$.
Solution: The key here is to write $3^{\cos x}=\exp (\cos x \ln 3)$, and $x^{x^{x}}=\exp \left(x^{x} \ln x\right)=$ $\exp ([\exp (x \ln x)] \ln x)$. The derivative then becomes
$f^{\prime}(x)=\frac{2 x+1}{x^{2}+x+1}-3^{\cos (x)} \sin (x) \ln (3)+x^{x^{x}}\left(x^{x}(\ln (x)+1) \ln (x)+\frac{x^{x}}{x}\right)$

