Q-1) Let $T(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}$ be the Taylor polynomial of degree 4 of $\tan x$. Find the coefficients a_{0}, \ldots, a_{5}.

Solution: $\quad T(x)=x+\frac{1}{3} x^{3}+\frac{2}{15} x^{5}$.

Q-2) Let $S(x)=b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}$ be the Taylor polynomial of degree 4 of $\frac{x}{T(x)}$ where $T(x)$ is as in question 1 above. Find the coefficients b_{0}, \ldots, b_{4}.

Solution: $\quad S(x)=1-\frac{1}{3} x^{2}-\frac{1}{45} x^{4}$.

Q-3) Let $R(x)=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+c_{4} x^{4}$ be the Taylor polynomial of degree 4 of $x \cot x$. Find the coefficients c_{0}, \ldots, c_{4}.

Solution: $\quad R(x)=1-\frac{1}{3} x^{2}-\frac{1}{45} x^{4}$.

Q-4) Compare the polynomials $S(x)$ and $R(x)$. Are they the same? Explain why. Are they different? Explain why.

Solution: If $F(x)=\frac{1}{H(x)}$, then $F^{(n)}(0)$ depends on $H(0), H^{\prime}(0), \ldots, H^{(n)}(0)$. The first n derivatives of the Taylor polynomial $T(x)$ of $H(x)$ agree with those of $H(x)$. Therefore the first n derivatives of $\frac{1}{T(x)}$ are the same as those of $F(x)$.

In our case first check that $T(x) / x$ is the Taylor polynomial of $\tan x / x$. Then observe that $S(x)$ is the Taylor polynomial of $1 /(\tan x / x)$ and $R(x)$ is the Taylor polynomial of $1 /(T(x) / x)$, so they are the same.

