Math 113 Calculus - Midterm Exam I - Solutions

Q-1) Let $M=\{x \in \mathbb{R} \mid x<\sqrt{5}\}$. Prove that $\sqrt{5}$ is the supremum of M. Moreover show that for any $\epsilon>0$, there exists at least one element $y \in M$ such that $\sqrt{5}-\epsilon<y$.

Solution: Assume that $\sqrt{5}$ is not the supremum of M. On the other hand, $\sqrt{5}$ is an upper bound for M, and we know that being nonempty and bounded from above, M has supremum. Let s be the supremum of M. Then $s<\sqrt{5}$. Let $t=(\sqrt{5}+s) / 2$. But $s<t<\sqrt{5}$ gives us two contradictory results: $t \in M$ and $t>\sup M$. We reached this contradiction by starting with the assumption that $\sqrt{5}$ is not the supremum of M. Therefore that assumption must be wrong, and indeed $\sqrt{5}=\sup M$.

The other claim is extremely easy to prove: let $y=\sqrt{5}-(\epsilon / 2)$.

Q-2-a) Prove by induction that $1+3+5+\cdots+(2 n-1)=n^{2}$, for all integers $n \geq 1$.
Q-2-b) Prove by induction one of the following statements:
(i) $4+13+28+\cdots+\left(3 n^{2}+1\right) \leq n^{3}+3 n$, for all integers $n \geq 1$.
(ii) $4+13+28+\cdots+\left(3 n^{2}+1\right)=n^{3}+3 n$, for all integers $n \geq 1$.
(iii) $4+13+28+\cdots+\left(3 n^{2}+1\right) \geq n^{3}+3 n$, for all integers $n \geq 1$.

Solution: Q-2-a) The statement is true for $n=1$. Assume that it is true for some n, and $2(n+1)-1$ to both sides of the equality

$$
\begin{aligned}
1+3+5+\cdots+(2 n-1) & =n^{2} \\
2(n+1)-1 & =2 n+1
\end{aligned}
$$

adding up side by side, we get:

$$
1+3+5+\cdots+(2(n+1)-1)=(n+1)^{2}
$$

which shows that the statement is also true for $n+1$ when it is true for n. This completes the induction argument and proves the claim for all $n \geq 1$.

Solution: Q-2-b) All three statements are true for $n=1$, but only the last one is true for $n=2$. Therefore we try to prove (iii). We already know that it is true for $n=1$. We assume that it is true for some n. We add $3(n+1)^{2}+1$ to both sides of the inequality

$$
\begin{aligned}
4+13+28+\cdots+\left(3 n^{2}+1\right) & \geq n^{3}+3 n \\
3(n+1)^{2}+1 & =3 n^{2}+6 n+4
\end{aligned}
$$

adding up side by side, we get:

$$
\begin{aligned}
4+13+28+\cdots+\left(3(n+1)^{2}+1\right) & \geq(n+1)^{3}+3(n+1)+3 n \\
& \geq(n+1)^{3}+3(n+1)
\end{aligned}
$$

which completes the proof, as above.

Q-3) Define a function $f:[0,1] \rightarrow \mathbb{R}$ as follows:

$$
f(x)= \begin{cases}x^{2} & \text { if } x \text { is rational } \\ 0 & \text { otherwise }\end{cases}
$$

Is f integrable on $[0,1]$? If yes, calculate $\int_{0}^{1} f(x) d x$. If $n o t$, then explain why.
Solution: Let as usual S be the integrals of all nonnegative step functions s on $[0,1]$ with $s(x) \leq f(x)$. There is only $s=0$ step function satisfying this condition, so $S=\{0\}$. Hence $\sup S=0$.

Let T be the set of integrals of all step functions t on $[0,1]$ such that $f(x) \leq t(x)$.
Consider the step function h defined as $h(x)=0$ for $0 \leq x<1 / 2$, and $h(x)=1 / 4$ for $1 / 2 \leq x \leq 1$. Then for all $x \in[0,1]$ we have $0 \leq h(x) \leq f(x) \leq t(x)$ for every step function $t \geq f$ on [0, 1]. In particular $1 / 8=\int_{0}^{1} h(x) d x \leq \int_{0}^{1} t(x) d x$. Therefore $\inf T \geq 1 / 8>0=\sup S$, and the integral of f does not exist.

Q-4) Calculate the area bounded between the curve $f(x)=x^{3}-4 x$ and the x-axis, from $x=-1$ to $x=1$.

Solution: Note that $f(-x)=-f(x)$ and $f(x)>0$ for $x<0$. Then the required area is

$$
\begin{aligned}
\text { Area } & =2 \int_{-1}^{0}\left(x^{3}-4 x\right) d x \\
& =2\left(\frac{x^{4}}{4}-\left.2 x^{2}\right|_{-1} ^{0}\right) \\
& =\frac{7}{2}
\end{aligned}
$$

Q-5) The line $y=x / 5$ intersects the graph of $y=\sin x$ at $x=0$ and $x=\alpha=2.595739080$ when $x \geq 0$. Let R denote the region that they thus bound. Set up an integral which calculate the volume of the solid obtained by revolving the region R around
(i) x-axis.
(ii) y-axis.

Do not evaluate the integrals. (we will be able to evaluate these integrals in chapter 5.)
Solution: (i) $\pi \int_{0}^{\alpha}\left(\sin ^{2}(x)-\frac{x^{2}}{25}\right) d x$.
Solution: (ii) $2 \pi \int_{0}^{\alpha} x\left(\sin (x)-\frac{x}{5}\right) d x$.

