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Math 113 Calculus – Midterm Exam I – Solutions

Q-1) Let M = {x ∈ R | x <
√

5 }. Prove that
√

5 is the supremum of M . Moreover show that
for any ε > 0, there exists at least one element y ∈ M such that

√
5− ε < y.

Solution: Assume that
√

5 is not the supremum of M . On the other hand,
√

5 is an upper
bound for M , and we know that being nonempty and bounded from above, M has supremum.
Let s be the supremum of M . Then s <

√
5. Let t = (

√
5 + s)/2. But s < t <

√
5 gives us

two contradictory results: t ∈ M and t > sup M . We reached this contradiction by starting
with the assumption that

√
5 is not the supremum of M . Therefore that assumption must be

wrong, and indeed
√

5 = sup M .

The other claim is extremely easy to prove: let y =
√

5− (ε/2).

Q-2-a) Prove by induction that 1 + 3 + 5 + · · ·+ (2n− 1) = n2, for all integers n ≥ 1.

Q-2-b) Prove by induction one of the following statements:
(i) 4 + 13 + 28 + · · ·+ (3n2 + 1) ≤ n3 + 3n, for all integers n ≥ 1.
(ii) 4 + 13 + 28 + · · ·+ (3n2 + 1) = n3 + 3n, for all integers n ≥ 1.

(iii) 4 + 13 + 28 + · · ·+ (3n2 + 1) ≥ n3 + 3n, for all integers n ≥ 1.

Solution: Q-2-a) The statement is true for n = 1. Assume that it is true for some n, and
2(n + 1)− 1 to both sides of the equality

1 + 3 + 5 + · · ·+ (2n− 1) = n2

2(n + 1)− 1 = 2n + 1

adding up side by side, we get:

1 + 3 + 5 + · · ·+ (2(n + 1)− 1) = (n + 1)2

which shows that the statement is also true for n + 1 when it is true for n. This completes the
induction argument and proves the claim for all n ≥ 1.

Solution: Q-2-b) All three statements are true for n = 1, but only the last one is true for
n = 2. Therefore we try to prove (iii). We already know that it is true for n = 1. We assume
that it is true for some n. We add 3(n + 1)2 + 1 to both sides of the inequality

4 + 13 + 28 + · · ·+ (3n2 + 1) ≥ n3 + 3n

3(n + 1)2 + 1 = 3n2 + 6n + 4

adding up side by side, we get:

4 + 13 + 28 + · · ·+ (3(n + 1)2 + 1) ≥ (n + 1)3 + 3(n + 1) + 3n

≥ (n + 1)3 + 3(n + 1)



which completes the proof, as above.

Q-3) Define a function f : [0, 1] → R as follows:

f(x) =

{
x2 if x is rational,
0 otherwise.

Is f integrable on [0, 1]? If yes, calculate
∫ 1

0
f(x)dx. If not, then explain why.

Solution: Let as usual S be the integrals of all nonnegative step functions s on [0, 1] with
s(x) ≤ f(x). There is only s = 0 step function satisfying this condition, so S = {0}. Hence
sup S = 0.

Let T be the set of integrals of all step functions t on [0, 1] such that f(x) ≤ t(x).

Consider the step function h defined as h(x) = 0 for 0 ≤ x < 1/2, and h(x) = 1/4 for
1/2 ≤ x ≤ 1. Then for all x ∈ [0, 1] we have 0 ≤ h(x) ≤ f(x) ≤ t(x) for every step function

t ≥ f on [0, 1]. In particular 1/8 =
∫ 1

0
h(x)dx ≤ ∫ 1

0
t(x)dx. Therefore inf T ≥ 1/8 > 0 = sup S,

and the integral of f does not exist.

Q-4) Calculate the area bounded between the curve f(x) = x3− 4x and the x-axis, from x = −1
to x = 1.

Solution: Note that f(−x) = −f(x) and f(x) > 0 for x < 0. Then the required area is

Area = 2

∫ 0

−1

(x3 − 4x)dx

= 2

(
x4

4
− 2x2

∣∣∣∣
0

−1

)

=
7

2
.

Q-5) The line y = x/5 intersects the graph of y = sin x at x = 0 and x = α = 2.595739080 when
x ≥ 0. Let R denote the region that they thus bound. Set up an integral which calculate
the volume of the solid obtained by revolving the region R around
(i) x-axis.
(ii) y-axis.
Do not evaluate the integrals. (we will be able to evaluate these integrals in chapter 5.)

Solution: (i) π

∫ α

0

(
sin2(x)− x2

25

)
dx.

Solution: (ii) 2π

∫ α

0

x
(
sin(x)− x

5

)
dx.


