Math 113 Calculus – Midterm Exam I – Solutions

Q-1) Let $M = \{x \in \mathbb{R} \mid x < \sqrt{5}\}$. Prove that $\sqrt{5}$ is the supremum of M. Moreover show that for any $\epsilon > 0$, there exists at least one element $y \in M$ such that $\sqrt{5} - \epsilon < y$.

Solution: Assume that $\sqrt{5}$ is not the supremum of M. On the other hand, $\sqrt{5}$ is an upper bound for M, and we know that being nonempty and bounded from above, M has supremum. Let s be the supremum of M. Then $s < \sqrt{5}$. Let $t = (\sqrt{5} + s)/2$. But $s < t < \sqrt{5}$ gives us two contradictory results: $t \in M$ and $t > \sup M$. We reached this contradiction by starting with the assumption that $\sqrt{5}$ is not the supremum of M. Therefore that assumption must be wrong, and indeed $\sqrt{5} = \sup M$.

The other claim is extremely easy to prove: let $y = \sqrt{5} - (\epsilon/2)$.

Q-2-a) Prove by induction that $1 + 3 + 5 + \dots + (2n - 1) = n^2$, for all integers $n \ge 1$.

Q-2-b) Prove by induction one of the following statements:

- (i) $4 + 13 + 28 + \dots + (3n^2 + 1) \le n^3 + 3n$, for all integers $n \ge 1$. (ii) $4 + 13 + 28 + \dots + (3n^2 + 1) = n^3 + 3n$, for all integers $n \ge 1$. (iii) $4 + 13 + 28 + \dots + (3n^2 + 1) \ge n^3 + 3n$, for all integers $n \ge 1$.

Solution: Q-2-a) The statement is true for n = 1. Assume that it is true for some n, and 2(n+1) - 1 to both sides of the equality

> $1 + 3 + 5 + \dots + (2n - 1) = n^2$ 2(n+1) - 1 = 2n + 1adding up side by side, we get: $1+3+5+\dots+(2(n+1)-1) = (n+1)^2$

which shows that the statement is also true for n + 1 when it is true for n. This completes the induction argument and proves the claim for all $n \ge 1$.

Solution: Q-2-b) All three statements are true for n = 1, but only the last one is true for n=2. Therefore we try to prove (iii). We already know that it is true for n=1. We assume that it is true for some n. We add $3(n+1)^2 + 1$ to both sides of the inequality

$$4 + 13 + 28 + \dots + (3n^2 + 1) \ge n^3 + 3n$$

$$3(n+1)^2 + 1 = 3n^2 + 6n + 4$$

adding up side by side, we get:

$$\begin{array}{rcl} 4+13+28+\dots+(3(n+1)^2+1) & \geq & (n+1)^3+3(n+1)+3n \\ & \geq & (n+1)^3+3(n+1) \end{array}$$

Q-3) Define a function $f : [0, 1] \to \mathbb{R}$ as follows:

$$f(x) = \begin{cases} x^2 & \text{if } x \text{ is rational,} \\ 0 & \text{otherwise.} \end{cases}$$

Is f integrable on [0, 1]? If yes, calculate $\int_0^1 f(x) dx$. If not, then explain why.

Solution: Let as usual S be the integrals of all nonnegative step functions s on [0, 1] with $s(x) \leq f(x)$. There is only s = 0 step function satisfying this condition, so $S = \{0\}$. Hence $\sup S = 0$.

Let T be the set of integrals of all step functions t on [0, 1] such that $f(x) \leq t(x)$.

Consider the step function h defined as h(x) = 0 for $0 \le x < 1/2$, and h(x) = 1/4 for $1/2 \le x \le 1$. Then for all $x \in [0, 1]$ we have $0 \le h(x) \le f(x) \le t(x)$ for every step function $t \ge f$ on [0, 1]. In particular $1/8 = \int_0^1 h(x) dx \le \int_0^1 t(x) dx$. Therefore $T \ge 1/8 > 0 = \sup S$, and the integral of f does not exist.

Q-4) Calculate the area bounded between the curve $f(x) = x^3 - 4x$ and the x-axis, from x = -1 to x = 1.

Solution: Note that f(-x) = -f(x) and f(x) > 0 for x < 0. Then the required area is

Area =
$$2 \int_{-1}^{0} (x^3 - 4x) dx$$

= $2 \left(\frac{x^4}{4} - 2x^2 \Big|_{-1}^{0} \right)$
= $\frac{7}{2}$.

Q-5) The line y = x/5 intersects the graph of $y = \sin x$ at x = 0 and $x = \alpha = 2.595739080$ when $x \ge 0$. Let R denote the region that they thus bound. Set up an integral which calculate the volume of the solid obtained by revolving the region R around

- (i) x-axis.
- (ii) y-axis.

Do <u>not</u> evaluate the integrals. (we will be able to evaluate these integrals in chapter 5.)

Solution: (i) $\pi \int_0^\alpha \left(\sin^2(x) - \frac{x^2}{25} \right) dx.$ Solution: (ii) $2\pi \int_0^\alpha x \left(\sin(x) - \frac{x}{5} \right) dx.$