Date: 20 November 2004, Saturday
Instructor: Ali Sinan Sertöz
Time: 10:00-12:00

Math 113 Calculus - Midterm Exam II - Solutions

Q-1) Write the derivatives of the given functions. Do not simplify your answer. No partial credits!
a) $f(x)=x \tan x+\sqrt{1+x^{2}}, f^{\prime}(x)=\tan x+x \sec ^{2} x+\frac{x}{\sqrt{1+x^{2}}}$
b) $f(x)=\frac{x^{3}+3 x-1}{x^{4}+x+1}, f^{\prime}(x)=\frac{\left(3 x^{2}+3\right)\left(x^{4}+x+1\right)-\left(x^{3}+3 x-1\right)\left(4 x^{3}+1\right)}{\left(x^{4}+x+1\right)^{2}}$
c) $f(x)=1+\sqrt{2+\sqrt{3+x^{2}}}, f^{\prime}(x)=\frac{1}{2 \sqrt{2+\sqrt{3+x^{2}}}} \cdot \frac{x}{\sqrt{3+x^{2}}}$
d) $f(x)=\left(1+3 x^{5}\right)(x+\cos x)\left(\frac{\sin x}{1+x}\right)$,
$f^{\prime}(x)=\left(15 x^{4}\right)(x+\cos x)\left(\frac{\sin x}{1+x}\right)+\left(1+3 x^{5}\right)(1-\sin x)\left(\frac{\sin x}{1+x}\right)+\left(1+3 x^{5}\right)(x+\cos x)\left(\frac{(\cos x)(1+x)-\sin x}{(1+x)^{2}}\right)$

Q-2) Calculate the following derivatives. No partial credits!
a) $f(x)=x \cos x, x(t)=(1+t) /(1-t),\left.\frac{d f}{d t}\right|_{t=-1}=\frac{\mathbf{1}}{\mathbf{2}}$
$x^{\prime}(t)=\frac{2}{(1-t)^{2}}, \quad x^{\prime}(-1)=\frac{1}{2}, \quad x(-1)=0$.
$f^{\prime}(x)=\cos x-x \sin x, \quad f^{\prime}(0)=1$,
$\left.\frac{d f}{d t}\right|_{t=-1}=f^{\prime}(0) \cdot x^{\prime}(-1)=\frac{\mathbf{1}}{\mathbf{2}}$
b) $f(x)=x^{2}+x+1, g(x)=\cos x, h(x)=\frac{x+\pi}{x^{3}+3},(f \circ g \circ h)^{\prime}(0)=-\frac{\mathbf{1}}{\sqrt{3}}$
$h^{\prime}(x)=\frac{x^{3}+3-(x+\pi)\left(3 x^{2}\right)}{\left(x^{3}+3\right)^{2}}, \quad h^{\prime}(0)=\frac{1}{3}, \quad h(0)=\frac{\pi}{3}$.
$g^{\prime}(x)=-\sin x, \quad g^{\prime}\left(\frac{\pi}{3}\right)=-\frac{\sqrt{3}}{2}, \quad g\left(\frac{\pi}{3}\right)=\frac{1}{2}$
$f^{\prime}(x)=2 x+1, \quad f^{\prime}\left(\frac{1}{2}\right)=2$
$(f \circ g \circ h)^{\prime}(0)=f^{\prime}\left(\frac{1}{2}\right) \cdot g^{\prime}\left(\frac{\pi}{3}\right) \cdot h^{\prime}(0)=-\frac{1}{\sqrt{3}}$
c) If $x^{3}+x^{2} y+x y^{3}+y^{4}+17=0$, and $x=-3, y=2$, then $y^{\prime}=-\frac{\mathbf{2 3}}{\mathbf{5}}$

Implicitly differentiating the equation, we get $3 x^{2}+2 x y+x^{2} y^{\prime}+y^{3}+3 x y^{2} y^{\prime}+4 y^{3} y^{\prime}=0$. Putting in $x=-3$ and $y=2$ we get $23+5 y^{\prime}=0$, from which we get $y^{\prime}=-23 / 5$.

Q-3) The sides of a triangle $A B C$ change as a differentiable function of time, but the angle at A always remains $\pi / 2$. As a notational convenience we let $A(t)=$ area at time t, and $P(t)=$ perimeter at time t for this triangle. At a particular time t_{0} we make the following measurements: $A\left(t_{0}\right)=30 \mathrm{~cm}^{2}, A^{\prime}\left(t_{0}\right)=40 \mathrm{~cm}^{2} / \mathrm{sec}, A B\left(t_{0}\right)=12 \mathrm{~cm}, A B^{\prime}\left(t_{0}\right)=4 \mathrm{~cm} / \mathrm{sec}$. Find $P^{\prime}\left(t_{0}\right)$.
$P(t)=A B+A C+B C, \quad P^{\prime}(t)=A B^{\prime}+A C^{\prime}+B C^{\prime}$. Since $A B^{\prime}=4$ is already given, we need to find $A C^{\prime}$ and $B C^{\prime}$ in order to calculate P^{\prime}.
$A(t)=(1 / 2) A B \cdot A C, \quad A=30, \quad A B=12 \quad \Rightarrow \quad A C=5$.
$A^{\prime}(t)=(1 / 2)\left(A B^{\prime} \cdot A C+A B \cdot A C^{\prime}\right), \quad A^{\prime}=40, \quad A B^{\prime}=4 \quad \Rightarrow \quad A C^{\prime}=5$.
$A B^{2}+A C^{2}=B C^{2} \quad \Rightarrow \quad B C=13$.
$2 A B \cdot A B^{\prime}+2 A C \cdot A C^{\prime}=2 B C \cdot B C^{\prime} \quad \Rightarrow \quad B C^{\prime}=73 / 13$.
Finally putting these together we get $P^{\prime}\left(t_{0}\right)=A B^{\prime}+A C^{\prime}+B C^{\prime}=4+5+73 / 13=190 / 13$.

Q-4) Find the volume of the right circular cone of maximal volume that can be inscribed into a sphere of radius R.

Let x be the distance of the base of the cone to the center of the sphere such that when $x>0$, the base of the cone is below the center. It then follows that the radius r of the base of the cone satisfies $r^{2}=R^{2}-x^{2}$. The volume of the cone is $V(x)=\frac{\pi}{3} r^{2}(R+x)=\frac{\pi}{3}\left(R^{2}-x^{2}\right)(R+x)=$ $\frac{\pi}{3}\left(R^{3}-R x^{2}+R^{2} x-x^{3}\right)$, where $-R \leq x \leq R$.
$V^{\prime}(x)=-\frac{\pi}{3}\left(3 x^{2}+2 R x-R^{2}\right)=0$ when $x=-R$ or $x=R / 3$.
Since $V=0$ at the end points, $x= \pm R$, and since $V(x) \geq 0$, the value at $R / 3$ must give the global maximum.
$V\left(\frac{R}{3}\right)=\frac{32 \pi R^{3}}{81}$.

Q-5) Consider the function $f(x)=3 x^{4}-16 x^{3}+18 x^{2}-1$ for $x \in[-1,4]$.
Find the local min/max points. Find the global min/max points.
Find the concavity and where concavity changes. (you may take $\sqrt{7}$ as 2.6.)
Sketch the curve. You may use the following table.

x	-1	0		0.5		2.1		3
$f(x)$	36						31	
$f^{\prime}(x)$	-	+	+	-	-	+		
$f^{\prime \prime}(x)$	+	+	-	-	+	+		
	\searrow	\nearrow	\nearrow	\searrow	\searrow	\nearrow		
	\smile	\smile	\frown	\frown	\smile	\smile		

$f^{\prime}(x)=12 x(x-1)(x-3)$, so $f^{\prime}(x)=0$ when $x=0,1,3$.
$f^{\prime \prime}(x)=12\left(3 x^{2}-8 x+3\right)$, so $f^{\prime \prime}(x)=0$ when $x=\frac{4}{3} \pm \frac{\sqrt{7}}{3}=0.5,2.1$ approximately.
By checking the signs of f^{\prime} and $f^{\prime \prime}$ we find that:
$f(0)=-1$ is a local minimum.
$f(1)=4$ is a local maximum.
$f(3)=-28$ is a local minimum.
We also check the end points: $f(-1)=36$ and $f(4)=31$.
Now comparing the above five values we conclude that $f(3)=-28$ is the global minimum and $f(-1)=36$ is the global maximum.

Here is how the graph looks like (unscaled):

Note that $f(x)=3 x^{4}-16 x^{3}+18 x^{2}-1=\left(3 x^{2}-4 x-1\right)\left(x^{2}-4 x+1\right)$ from which you can easily find the zeros of f as $2+\sqrt{3} \approx 3.7,2-\sqrt{3} \approx 0.2,(2+\sqrt{7}) / 2 \approx 1.5$ and $(2-\sqrt{7}) / 2 \approx-0.2$. However approximate indications of the roots on the graph is acceptable for the exam purposes.

