Math 113 Calculus – Midterm Exam II – Solutions

Q-1) Write the derivatives of the given functions. Do not simplify your answer. No partial credits!

a)
$$f(x) = x \tan x + \sqrt{1 + x^2}, f'(x) = \tan x + x \sec^2 x + \frac{x}{\sqrt{1 + x^2}}$$

b)
$$f(x) = \frac{x^3 + 3x - 1}{x^4 + x + 1}, \ f'(x) = \frac{(3x^2 + 3)(x^4 + x + 1) - (x^3 + 3x - 1)(4x^3 + 1)}{(x^4 + x + 1)^2}$$

c)
$$f(x) = 1 + \sqrt{2 + \sqrt{3 + x^2}}, f'(x) = \frac{1}{2\sqrt{2 + \sqrt{3 + x^2}}} \cdot \frac{x}{\sqrt{3 + x^2}}$$

$$\begin{aligned} \mathbf{d}) \quad f(x) &= \left(1 + 3x^5\right) \left(x + \cos x\right) \left(\frac{\sin x}{1 + x}\right), \\ f'(x) &= \left(15x^4\right) \left(x + \cos x\right) \left(\frac{\sin x}{1 + x}\right) + \left(1 + 3x^5\right) \left(1 - \sin x\right) \left(\frac{\sin x}{1 + x}\right) + \left(1 + 3x^5\right) \left(x + \cos x\right) \left(\frac{(\cos x)(1 + x) - \sin x}{(1 + x)^2}\right). \end{aligned}$$

Q-2) Calculate the following derivatives. No partial credits!

a)
$$f(x) = x \cos x, \ x(t) = (1+t)/(1-t), \ \frac{df}{dt}\Big|_{t=-1} = \boxed{\frac{1}{2}}$$

 $x'(t) = \frac{2}{(1-t)^2}, \ x'(-1) = \boxed{\frac{1}{2}}, \ x(-1) = 0.$
 $f'(x) = \cos x - x \sin x, \ f'(0) = \boxed{1},$
 $\frac{df}{dt}\Big|_{t=-1} = f'(0) \cdot x'(-1) = \frac{1}{2}$
 $x + \pi$

b)
$$f(x) = x^2 + x + 1, \ g(x) = \cos x, \ h(x) = \frac{x + \pi}{x^3 + 3}, \ (f \circ g \circ h)'(0) = -\frac{1}{\sqrt{3}}$$

 $h'(x) = \frac{x^3 + 3 - (x + \pi)(3x^2)}{(x^3 + 3)^2}, \quad h'(0) = \frac{1}{3}, \quad h(0) = \frac{\pi}{3}.$

$$g'(x) = -\sin x, \quad g'(\frac{\pi}{3}) = \boxed{-\frac{\sqrt{3}}{2}}, \quad g(\frac{\pi}{3}) = \frac{1}{2}$$
$$f'(x) = 2x + 1, \quad f'(\frac{1}{2}) = \boxed{2}$$
$$(f \circ g \circ h)'(0) = f'(\frac{1}{2}) \cdot g'(\frac{\pi}{3}) \cdot h'(0) = -\frac{1}{\sqrt{3}}$$

c) If $x^3 + x^2y + xy^3 + y^4 + 17 = 0$, and x = -3, y = 2, then $y' = -\frac{23}{5}$

Implicitly differentiating the equation, we get $3x^2 + 2xy + x^2y' + y^3 + 3xy^2y' + 4y^3y' = 0$. Putting in x = -3 and y = 2 we get 23 + 5y' = 0, from which we get y' = -23/5.

Q-3) The sides of a triangle ABC change as a differentiable function of time, but the angle at A always remains $\pi/2$. As a notational convenience we let A(t) =area at time t, and P(t) =perimeter at time t for this triangle. At a particular time t_0 we make the following measurements: $A(t_0) = 30 \ cm^2$, $A'(t_0) = 40 \ cm^2/sec$, $AB(t_0) = 12 \ cm$, $AB'(t_0) = 4 \ cm/sec$. Find $P'(t_0)$.

P(t) = AB + AC + BC, P'(t) = AB' + AC' + BC'. Since AB' = 4 is already given, we need to find AC' and BC' in order to calculate P'.

$$\begin{split} A(t) &= (1/2)AB \cdot AC, \quad A = 30, \quad AB = 12 \quad \Rightarrow \quad AC = 5. \\ A'(t) &= (1/2)(AB' \cdot AC + AB \cdot AC'), \quad A' = 40, \quad AB' = 4 \quad \Rightarrow \quad AC' = 5. \\ AB^2 + AC^2 &= BC^2 \quad \Rightarrow \quad BC = 13. \\ 2 \ AB \cdot AB' + 2 \ AC \cdot AC' = 2 \ BC \cdot BC' \quad \Rightarrow \quad BC' = 73/13. \\ \end{split}$$
Finally putting these together we get $P'(t_0) = AB' + AC' + BC' = 4 + 5 + 73/13 = 190/13. \end{split}$

Q-4) Find the volume of the right circular cone of maximal volume that can be inscribed into a sphere of radius R.

Let x be the distance of the base of the cone to the center of the sphere such that when x > 0, the base of the cone is below the center. It then follows that the radius r of the base of the cone satisfies $r^2 = R^2 - x^2$. The volume of the cone is $V(x) = \frac{\pi}{3}r^2(R+x) = \frac{\pi}{3}(R^2 - x^2)(R+x) = \frac{\pi}{3}(R^3 - Rx^2 + R^2x - x^3)$, where $-R \le x \le R$. $V'(x) = -\frac{\pi}{2}(3x^2 + 2Rx - R^2) = 0$ when x = -R or x = R/3.

Since V = 0 at the end points, $x = \pm R$, and since $V(x) \ge 0$, the value at R/3 must give the global maximum.

$$V(\frac{R}{3}) = \frac{32\pi R^3}{81}$$

Q-5) Consider the function $f(x) = 3x^4 - 16x^3 + 18x^2 - 1$ for $x \in [-1, 4]$. Find the local min/max points. Find the global min/max points. Find the concavity and where concavity changes. (you may take $\sqrt{7}$ as 2.6.) Sketch the curve. You may use the following table.

x	-1	0 0	.5 1	1 2	.1 3	3 4
f(x)	36					31
f'(x)	—	+	+	—	—	+
f''(x)	+	+	_	—	+	+
		/	7	\searrow	\searrow	7
				\frown	\sim	\sim

f'(x) = 12x(x-1)(x-3), so f'(x) = 0 when x = 0, 1, 3.

 $f''(x) = 12(3x^2 - 8x + 3)$, so f''(x) = 0 when $x = \frac{4}{3} \pm \frac{\sqrt{7}}{3} = 0.5$, 2.1 approximately.

By checking the signs of f' and f'' we find that:

f(0) = -1 is a local minimum.

f(1) = 4 is a local maximum.

f(3) = -28 is a local minimum.

We also check the end points: f(-1) = 36 and f(4) = 31.

Now comparing the above five values we conclude that f(3) = -28 is the global minimum and f(-1) = 36 is the global maximum.

Here is how the graph looks like (unscaled):

Note that $f(x) = 3x^4 - 16x^3 + 18x^2 - 1 = (3x^2 - 4x - 1)(x^2 - 4x + 1)$ from which you can easily find the zeros of f as $2+\sqrt{3} \approx 3.7$, $2-\sqrt{3} \approx 0.2$, $(2+\sqrt{7})/2 \approx 1.5$ and $(2-\sqrt{7})/2 \approx -0.2$. However approximate indications of the roots on the graph is acceptable for the exam purposes.