Math 113 Homework 1 - Solutions

Due: 13 October 2005 Thursday class hour for section-2
Due: 14 October 2005 Friday class hour for section-1

Q-1) Find a formula for the sum

$$
S(n)=1 \cdot 2+3 \cdot 4+\cdots+(2 n-1)(2 n)
$$

where $n \in \mathbb{N}^{+}$. Prove your formula by induction.

Solution:

$$
\begin{aligned}
S(n) & =1 \cdot 2+3 \cdot 4+\cdots+(2 n-1)(2 n) \\
& =\sum_{k=1}^{n}(2 k-1)(2 k) \\
& =4 \sum_{k=1}^{n} k^{2}-2 \sum_{k=1}^{n} k \\
& =\frac{4}{3} n^{3}+n^{2}-\frac{1}{3} n .
\end{aligned}
$$

Q-2) Find all $x \in \mathbb{R}$ for which we have $\left|x^{2}-7 x+11\right|<1$.
Solution: $\quad\left|x^{2}-7 x+11\right|<1$ means $-1<x^{2}-7 x+11<1$. We then have to solve simultaneously for $0<x^{2}-7 x+12$ and $x^{2}-7 x-10<0$. The common solution set is then $(2,3) \cup(4,5)$.

Q-3) Find the area bounded by $y=|x|$ and $y=1-2 x-x^{2}$.

Solution:

$$
\int_{-1 / 2(\sqrt{5})-1 / 2}^{0}\left(1-x-x^{2}\right) d x+\int_{0}^{-3 / 2+1 / 2(\sqrt{13})}\left(1-3 x-x^{2}\right) d x=\frac{5}{12} \sqrt{5}-\frac{19}{6}+\frac{13}{12} \sqrt{13} \approx 1.67
$$

Q-4) Sketch and find the area bounded by the cardioid $f(\theta)=1+\sin \theta$ where $0 \leq \theta \leq 2 \pi$.

Solution:

$$
\frac{1}{2} \int_{0}^{2 \pi}(1+\sin (\theta))^{2} d \theta=\frac{3 \pi}{2}
$$

Q-5) Sketch the region bounded by the line $y=10-x$ and the curve $y=9 / x$.
i) Find the area of this region. Here you may take $\int_{1}^{9}(1 / x) d x \approx 2.2$.
ii) Find the volume obtained by revolving this region around the x -axis.
iii) Find the volume obtained by revolving this region around the y-axis.

Solution:

i)

$$
\int_{1}^{9}(10-x-9 / x) d x=40-9(2.2) \approx 20.22
$$

ii)

$$
\pi \int_{1}^{9}\left((10-x)^{2}-(9 / x)^{2}\right) d x=\frac{512 \pi}{3} .
$$

iii) $\frac{512 \pi}{3}$ due to symmetry!
comments and questions to sertoz@bilkent.edu.tr

